18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Connections with Connexins: the Molecular Basis of Direct Intercellular Signaling

      , ,
      European Journal of Biochemistry
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references199

          • Record: found
          • Abstract: found
          • Article: not found

          Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate.

          Intercellular Ca2+ signaling in primary cultures of glial cells was investigated with digital fluorescence video imaging. Mechanical stimulation of a single cell induced a wave of increased [Ca2+]i that was communicated to surrounding cells. This was followed by asynchronous Ca2+ oscillations in some cells. Similar communicated Ca2+ responses occurred in the absence of extracellular Ca2+, despite an initial decrease in [Ca2+]i in the stimulated cell. Mechanical stimulation in the presence of glutamate induced a typical communicated Ca2+ wave through cells undergoing asynchronous Ca2+ oscillations in response to glutamate. The coexistence of communicated Ca2+ waves and asynchronous Ca2+ oscillations suggests distinct mechanisms for intra- and intercellular Ca2+ signaling. This intercellular signaling may coordinate cooperative glial function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membrane of Xenopus oocytes

            Gap junctions are composed of a family of structural proteins called connexins, which oligomerize into intercellular channels and function to exchange low molecular weight metabolites and ions between adjacent cells. We have cloned a new member of the connexin family from lens cDNA, with a predicted molecular mass of 46 kD, called rat connexin46 (Cx46). Since a full-length cDNA corresponding to the 2.8-kb mRNA was not obtained, the stop codon and surrounding sequences were confirmed from rat genomic DNA. The RNA coding for this protein is abundant in lens fibers and detectable in both myocardium and kidney. Western analysis of both rat and bovine lens membrane proteins, using the anti- MP70 monoclonal antibody 6-4-B2-C6 and three anti-peptide antibodies against Cx46 demonstrates that Cx46 and MP70 are different proteins. Immunocytochemistry demonstrates that both proteins are localized in the same lens fiber junctional maculae. Synthesis of Cx46 in either reticulocyte lysate or Xenopus oocytes yields a 46-kD polypeptide; all anti-Cx46 antisera recognize a protein in rat lens membranes 5-10 kD larger, suggesting substantive lenticular posttranslational processing of the native translation product. Oocytes that have synthesized Cx46 depolarize and lyse within 24 h, a phenomenon never observed after expression of rat connexins 32 or 43 (Cx32 and Cx43). Lysis is prevented by osmotically buffering the oocytes with 5% Ficoll. Ficoll- buffered oocytes expressing Cx46 are permeable to Lucifer Yellow but not FITC-labeled BSA, indicating the presence of selective membrane permeabilities. Cx43-expressing oocytes are impermeable to Lucifer Yellow. Voltage-gated whole cell currents are measured in oocytes injected with dilute concentrations of Cx46 but not Cx43 mRNA. These currents are activated at potentials positive to -10 mV. Unlike other connexins expressed in Xenopus oocytes, these results suggest that unprocessed Cx46 induces nonselective channels in the oolemma that are voltage dependent and opened by large depolarizations.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              HEXAGONAL ARRAY OF SUBUNITS IN INTERCELLULAR JUNCTIONS OF THE MOUSE HEART AND LIVER

                Bookmark

                Author and article information

                Journal
                European Journal of Biochemistry
                Eur J Biochem
                Wiley
                0014-2956
                1432-1033
                May 15 1996
                May 15 1996
                : 238
                : 1
                : 1-27
                Article
                10.1111/j.1432-1033.1996.0001q.x
                8665925
                0520502f-56cb-4794-add7-1a0f4ab315a2
                © 1996

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article