19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Novel deletions in MYH7 and MYBPC3 identified in Indian families with familial hypertrophic cardiomyopathy

      Journal of Molecular and Cellular Cardiology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mutations causing familial hypertrophic cardiomyopathy (HCM) have been described in at least 11 genes encoding cardiac sarcomeric proteins. In this study, three previously unknown deletions have been identified in the human cardiac genes coding for beta-myosin heavy chain (MYH7 on chromosome 14) and myosin-binding protein-C (MYBPC3 on chromosome 11). In family MM, a 3-bp deletion in MYH7 was detected to be associated with loss of glutamic acid in position 927 (DeltaE927) of the myosin rod. In two other families (HH and NP, related by a common founder) a 2-bp loss in codon 453 (exon 16) of MYBPC3 was identified as the presumable cause of a translation reading frame shift. Taken together 15 living mutation carriers were investigated. Six deceased family members (with five cases of premature sudden cardiac death (SCD) in families MM and NP) were either obligate or suspected mutation carriers. In addition to these mutations a 25-bp deletion in intron 32 of MYBPC3 was identified in family MM (five carriers) and in a fourth family (MiR, one HCM patient, three deletion carriers). In agreement with the loss of the regular splicing branch point in the altered intron 32, a splicing deficiency was observed in an exon trapping experiment using MYBPC3 exon 33 as a test substrate. Varying disease profiles assessed using standard clinical, ECG and echocardiographic procedures in conjunction with mutation analysis led to the following conclusions: (1) In family MM the DeltaE927 deletion in MYH7 was assumed to be associated with complete penetrance. Two cases of reported SCD might have been related to this mutation. (2) The two families, HH and NP, distantly related by a common founder, and both suffering from a 2-bp deletion in exon 16 of MYBPC3 differed in their average phenotypes. In family NP, four cases of cardiac death were documented, whereas no cardiac-related death was reported from family HH. These results support the notion that mutations in HCM genes may directly determine disease penetrance and severity; however, a contribution of additional, unidentified factors (genes) to the HCM phenotype can-at least in some cases-not be excluded. (3) The deletion in intron 32 of MYBPC3 was seen in two families, but in both its relation to disease was not unequivocal. In addition, this deletion was observed in 16 of 229 unrelated healthy individuals of the population of the South Indian states of Kerala and Tamil Nadu. It was not seen in 270 Caucasians from Russia and western Europe. Hence, it is considered to represent a regional genetic polymorphism restricted to southern India. The association of the deletion with altered splicing in transfected cells suggests that this deletion may create a "modifying gene", which is per se not or only rarely causing HCM, but which may enhance the phenotype of a mutation responsible for disease.

          Related collections

          Author and article information

          Journal
          Journal of Molecular and Cellular Cardiology
          Journal of Molecular and Cellular Cardiology
          Elsevier BV
          00222828
          June 01 2003
          June 01 2003
          : 35
          : 6
          : 623-636
          Article
          10.1016/S0022-2828(03)00050-6
          12788380
          053144c2-5607-45d3-80da-ea3bbbb1e5ca
          © 2003

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article