103
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of TORC1 by Rag GTPases in nutrient response

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          TORC1 (Target of rapamycin complex 1) has a critical role in the regulation of cell growth and cell size. A wide range of signals, including amino acids, is known to activate TORC1. Here, we report the identification of Rag GTPases as novel activators of TORC1 in response to amino acid signals. Knockdown of Rag gene expression suppressed the stimulatory effect of amino acids on TORC1 in Drosophila S2 cells. Expression of constitutively active (GTP-bound) Rag in mammalian cells enhances TORC1 in the absence of amino acids while expression of dominant negative Rag blocks the stimulatory effects of amino acids on TORC1. Drosophila genetic studies also show that the Rag GTPases regulate cell growth, autophagy, and animal viability under starvation. Together, our studies establish a novel function of Rag GTPases in TORC1 activation in response to amino acid signals.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs.

          The immunosuppressants rapamycin and FK506 bind to the same intracellular protein, the immunophilin FKBP12. The FKB12-FK506 complex interacts with and inhibits the Ca(2+)-activated protein phosphatase calcineurin. The target of the FKBP12-rapamycin complex has not yet been identified. We report that a protein complex containing 245 kDa and 35 kDa components, designated rapamycin and FKBP12 targets 1 and 2 (RAFT1 and RAFT2), interacts with FKBP12 in a rapamycin-dependent manner. Sequences (330 amino acids total) of tryptic peptides derived from the 245 kDa RAFT1 reveal striking homologies to the yeast TOR gene products, which were originally identified by mutations that confer rapamycin resistance in yeast. A RAFT1 cDNA was obtained and found to encode a 289 kDa protein (2549 amino acids) that is 43% and 39% identical to TOR2 and TOR1, respectively. We propose that RAFT1 is the direct target of FKBP12-rapamycin and a mammalian homolog of the TOR proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role and regulation of starvation-induced autophagy in the Drosophila fat body.

            In response to starvation, eukaryotic cells recover nutrients through autophagy, a lysosomal-mediated process of cytoplasmic degradation. Autophagy is known to be inhibited by TOR signaling, but the mechanisms of autophagy regulation and its role in TOR-mediated cell growth are unclear. Here, we show that signaling through TOR and its upstream regulators PI3K and Rheb is necessary and sufficient to suppress starvation-induced autophagy in the Drosophila fat body. In contrast, TOR's downstream effector S6K promotes rather than suppresses autophagy, suggesting S6K downregulation may limit autophagy during extended starvation. Despite the catabolic potential of autophagy, disruption of conserved components of the autophagic machinery, including ATG1 and ATG5, does not restore growth to TOR mutant cells. Instead, inhibition of autophagy enhances TOR mutant phenotypes, including reduced cell size, growth rate, and survival. Thus, in cells lacking TOR, autophagy plays a protective role that is dominant over its potential role as a growth suppressor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism.

              The present study identifies the operation of a signal tranduction pathway in mammalian cells that provides a checkpoint control, linking amino acid sufficiency to the control of peptide chain initiation. Withdrawal of amino acids from the nutrient medium of CHO-IR cells results in a rapid deactivation of p70 S6 kinase and dephosphorylation of eIF-4E BP1, which become unresponsive to all agonists. Readdition of the amino acid mixture quickly restores the phosphorylation and responsiveness of p70 and eIF-4E BP1 to insulin. Increasing the ambient amino acids to twice that usually employed increases basal p70 activity to the maximal level otherwise attained in the presence of insulin and abrogates further stimulation by insulin. Withdrawal of most individual amino acids also inhibits p70, although with differing potency. Amino acid withdrawal from CHO-IR cells does not significantly alter insulin stimulation of tyrosine phosphorylation, phosphotyrosine-associated phosphatidylinositol 3-kinase activity, c-Akt/protein kinase B activity, or mitogen-activated protein kinase activity. The selective inhibition of p70 and eIF-4E BP1 phosphorylation by amino acid withdrawal resembles the response to rapamycin, which prevents p70 reactivation by amino acids, indicating that mTOR is required for the response to amino acids. A p70 deletion mutant, p70Delta2-46/DeltaCT104, that is resistant to inhibition by rapamycin (but sensitive to wortmannin) is also resistant to inhibition by amino acid withdrawal, indicating that amino acid sufficiency and mTOR signal to p70 through a common effector, which could be mTOR itself, or an mTOR-controlled downstream element, such as a protein phosphatase.
                Bookmark

                Author and article information

                Journal
                100890575
                21417
                Nat Cell Biol
                Nat. Cell Biol.
                Nature cell biology
                1465-7392
                1476-4679
                10 June 2009
                06 July 2008
                August 2008
                16 July 2009
                : 10
                : 8
                : 935-945
                Affiliations
                [1 ] Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093-0185
                [2 ] Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
                Author notes
                [* ]Corresponding authors: Kun-Liang Guan ( kuguan@ 123456ucsd.edu ) and Thomas Neufeld ( neufe003@ 123456umn.edu )
                [#]

                These two authors contributed equally to this study.

                [§]

                Present address: Department of Food Sciences and Nutrition, Catholic University of Daegu, Gyeongsan, Korea

                Article
                NIHMS121517
                10.1038/ncb1753
                2711503
                18604198
                05333ef0-3f95-4581-8f35-f89c4b0bcdd7
                History
                Funding
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: R01 GM062694-09 || GM
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: R01 GM062509-08 || GM
                Funded by: National Cancer Institute : NCI
                Award ID: R01 CA108941-05 || CA
                Categories
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article