17
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sperm ultrastructure of Pochazia shantungensis (Chou & Lu) and Ricania speculum (Walker) (Hemiptera, Ricaniidae) with phylogenetic implications

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          The sperm ultrastructure of two ricaniid species, Pochazia shantungensis (Chou & Lu) and Ricania speculum (Walker), was investigated using light and transmission electron microscopy. Both species have monoflagellate sperm, the shape and ultrastructure of the mature spermatozoon of these two species are similar in morphology, and 128 spermatozoa are organized into sperm bundles with their heads embedded in a homogenous matrix forming the spermatodesmata. The individual sperm is filiform and includes the head, neck and flagellum. The head is needle-like, with a bilayer acrosome and an inferior elongated nucleus which is formed of homogeneously compact and electron-dense chromatin. The neck region is indistinct and is comprised of the centriole and centriole adjunct with a homogeneous dense substance. The long flagellum has the typical 9 + 9 + 2 axoneme microtubule pattern and two symmetrical mitochondrial derivatives with an orderly array of cristae flanking both sides, and a pair of well-developed fishhook-shaped accessory bodies. Current evidence shows that ricaniid species have D-shaped mitochondrial derivatives in cross-section and a serrated electron-dense region. The phylogenetic relationship of Fulgoroidea with other superfamilies in Auchenorrhyncha is briefly discussed.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Phylogenomics and the evolution of hemipteroid insects

          Hemipteroid insects (Paraneoptera), with over 10% of all known insect diversity, are a major component of terrestrial and aquatic ecosystems. Previous phylogenetic analyses have not consistently resolved the relationships among major hemipteroid lineages. We provide maximum likelihood-based phylogenomic analyses of a taxonomically comprehensive dataset comprising sequences of 2,395 single-copy, protein-coding genes for 193 samples of hemipteroid insects and outgroups. These analyses yield a well-supported phylogeny for hemipteroid insects. Monophyly of each of the three hemipteroid orders (Psocodea, Thysanoptera, and Hemiptera) is strongly supported, as are most relationships among suborders and families. Thysanoptera (thrips) is strongly supported as sister to Hemiptera. However, as in a recent large-scale analysis sampling all insect orders, trees from our data matrices support Psocodea (bark lice and parasitic lice) as the sister group to the holometabolous insects (those with complete metamorphosis). In contrast, four-cluster likelihood mapping of these data does not support this result. A molecular dating analysis using 23 fossil calibration points suggests hemipteroid insects began diversifying before the Carboniferous, over 365 million years ago. We also explore implications for understanding the timing of diversification, the evolution of morphological traits, and the evolution of mitochondrial genome organization. These results provide a phylogenetic framework for future studies of the group.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            INSECT SPERM: THEIR STRUCTURE AND MORPHOGENESIS

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evolution of the planthoppers (Insecta: Hemiptera: Fulgoroidea).

              The planthopper superfamily Fulgoroidea (Insecta: Hemiptera) comprises approximately 20 described insect families, depending on which classification is followed. Multiple competing hypotheses of fulgoroid phylogeny have been published, based on either morphological character coding or DNA sequence data; however, those hypotheses disagree in several key aspects regarding the evolution of planthoppers. The current paper seeks to test these hypotheses, including the Asche (Asche, M. 1987. Preliminary thoughts on the phylogeny of Fulgoromorpha (Homoptera Auchenorrhyncha). In: Proceedings of the 6th Auchenorrhyncha Meeting, Turin, Italy, 7-11 September, 1987, pp. 47-53.) hypothesis of a trend in ovipositor structure, which may be correlated with planthopper feeding ecology. Presented here are phylogenetic reconstructions of Fulgoroidea based on analysis of DNA nucleotide sequence data from four loci (18S rDNA, 28S rDNA, Histone 3, and Wingless) sequenced from 83 exemplar taxa representing 18 planthopper families and outgroups. Data sets were analyzed separately and in various combinations under the maximum parsimony criterion, and the total combined dataset was analyzed via both maximum parsimony and partitioned Bayesian criteria; results of the combined analyses were concordant across reconstruction paradigms. Relationships recovered suggest several major planthopper lineages, including: (1) Delphacidae+Cixiidae; (2) Kinnaridae+Meenoplidae; (3) Fulgoridae+Dictyopharidae; (4) Lophopidae+Eurybrachidae (possibly+Flatidae); (5) Ricaniidae+Caliscelidae (possibly+Tropiduchidae). Results also suggest the placement of Achilixiidae outside of Cixiidae and of Tettigometridae as one of the more recently diversified lineages within Fulgoroidea. The resulting phylogeny supports Asche's (1987) hypothesis of a functional trend in ovipositor structure across families.
                Bookmark

                Author and article information

                Contributors
                Journal
                Zookeys
                Zookeys
                2
                urn:lsid:arphahub.com:pub:45048D35-BB1D-5CE8-9668-537E44BD4C7E
                urn:lsid:zoobank.org:pub:91BD42D4-90F1-4B45-9350-EEF175B1727A
                ZooKeys
                Pensoft Publishers
                1313-2989
                1313-2970
                2019
                14 October 2019
                : 880
                : 43-59
                Affiliations
                [1 ] Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China Northwest A&F University Yangling China
                Author notes
                Corresponding author: Daozheng Qin ( qindaozh@ 123456nwsuaf.edu.cn )

                Academic editor: Mike Wilson

                Article
                32810
                10.3897/zookeys.880.32810
                6803357
                31649481
                053454d7-c768-4a90-912a-e4e56c4d9a2a
                Zhen Jiang, Jianing Liu, Daozheng Qin

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 03 January 2019
                : 19 July 2019
                Funding
                National Natural Science Foundation of China (31672340, 31750002)
                Categories
                Research Article
                Auchenorrhyncha
                Fulgoroidea
                Hemiptera
                Insecta
                Ricaniidae
                Taxonomy
                Asia

                Animal science & Zoology
                accessory body,mitochondrial derivatives,planthoppers,spermatozoa,taxonomic implications,animalia,hemiptera,ricaniidae

                Comments

                Comment on this article