Optical coherence tomography (OCT)-based optical microangiography (OMAG) is a high-resolution, noninvasive imaging technique capable of providing three-dimensional in vivo blood flow visualization within microcirculatory tissue beds in the eye. Although the technique has demonstrated early clinical utility by imaging diseased eyes, its limited field of view (FOV) and the sensitivity to eye motion remain the two biggest challenges for the widespread clinical use of the technology. Here, we report the results of retinal OMAG imaging obtained from a Zeiss Cirrus 5000 spectral domain OCT system with motion tracking capability achieved by a line scan ophthalmoscope (LSO). The tracking LSO is able to guide the OCT scanning, which minimizes the effect of eye motion in the final results. We show that the tracking can effectively correct the motion artifacts and remove the discontinuities and distortions of vascular appearance due to microsaccade, leading to almost motion-free OMAG angiograms with good repeatability and reliability. Due to the robustness of the tracking LSO, we also show the montage scan protocol to provide unprecedented wide field retinal OMAG angiograms. We experimentally demonstrate a 12 x 16 mm² retinal OMAG angiogram acquired from a volunteer, which is the widest FOV retinal vasculature imaging up to now in the community.