+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nest Suitability, Fine-Scale Population Structure and Male-Mediated Dispersal of a Solitary Ground Nesting Bee in an Urban Landscape

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei’s G ST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing bee population abundance and connectivity in human dominated habitats and highlights the critical contribution of landscape genetic studies for enhanced conservation and management of native pollinators.

          Related collections

          Most cited references 41

          • Record: found
          • Abstract: found
          • Article: not found

          COLONY: a program for parentage and sibship inference from multilocus genotype data.

          Pedigrees, depicting genealogical relationships between individuals, are important in several research areas. Molecular markers allow inference of pedigrees in wild species where relationship information is impossible to collect by observation. Marker data are analysed statistically using methods based on Mendelian inheritance rules. There are numerous computer programs available to conduct pedigree analysis, but most software is inflexible, both in terms of assumptions and data requirements. Most methods only accommodate monogamous diploid species using codominant markers without genotyping error. In addition, most commonly used methods use pairwise comparisons rather than a full-pedigree likelihood approach, which considers the likelihood of the entire pedigree structure and allows the simultaneous inference of parentage and sibship. Here, we describe colony, a computer program implementing full-pedigree likelihood methods to simultaneously infer sibship and parentage among individuals using multilocus genotype data. colony can be used for both diploid and haplodiploid species; it can use dominant and codominant markers, and can accommodate, and estimate, genotyping error at each locus. In addition, colony can carry out these inferences for both monoecious and dioecious species. The program is available as a Microsoft Windows version, which includes a graphical user interface, and a Macintosh version, which uses an R-based interface. © 2009 Blackwell Publishing Ltd.
            • Record: found
            • Abstract: found
            • Article: not found

            Landscape effects on crop pollination services: are there general patterns?

            Pollination by bees and other animals increases the size, quality, or stability of harvests for 70% of leading global crops. Because native species pollinate many of these crops effectively, conserving habitats for wild pollinators within agricultural landscapes can help maintain pollination services. Using hierarchical Bayesian techniques, we synthesize the results of 23 studies - representing 16 crops on five continents - to estimate the general relationship between pollination services and distance from natural or semi-natural habitats. We find strong exponential declines in both pollinator richness and native visitation rate. Visitation rate declines more steeply, dropping to half of its maximum at 0.6 km from natural habitat, compared to 1.5 km for richness. Evidence of general decline in fruit and seed set - variables that directly affect yields - is less clear. Visitation rate drops more steeply in tropical compared with temperate regions, and slightly more steeply for social compared with solitary bees. Tropical crops pollinated primarily by social bees may therefore be most susceptible to pollination failure from habitat loss. Quantifying these general relationships can help predict consequences of land use change on pollinator communities and crop productivity, and can inform landscape conservation efforts that balance the needs of native species and people.
              • Record: found
              • Abstract: found
              • Article: not found

              COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients.

               Jinliang Wang (2010)
              The software package COANCESTRY implements seven relatedness estimators and three inbreeding estimators to estimate relatedness and inbreeding coefficients from multilocus genotype data. Two likelihood estimators that allow for inbred individuals and account for genotyping errors are for the first time included in this user-friendly program for PCs running Windows operating system. A simulation module is built in the program to simulate multilocus genotype data of individuals with a predefined relationship, and to compare the estimators and the simulated relatedness values to facilitate the selection of the best estimator in a particular situation. Bootstrapping and permutations are used to obtain the 95% confidence intervals of each relatedness or inbreeding estimate, and to test the difference in averages between groups. © 2010 Blackwell Publishing Ltd.

                Author and article information

                Role: Academic Editor
                PLoS One
                PLoS ONE
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                7 May 2015
                : 10
                : 5
                [1 ]Department of Entomology, Cornell University, Ithaca, New York, 14853, United States of America
                [2 ]Department of Natural Resources, Cornell University, Ithaca, New York, 14853, United States of America
                Australian National University, AUSTRALIA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MMLU SJM. Performed the experiments: MMLU CKS. Analyzed the data: MMLU SJM. Contributed reagents/materials/analysis tools: BND. Wrote the paper: MMLU SJM BND.


                Current address: Department of Entomology, North Carolina State University, Raleigh, North Carolina, 27695, United States of America


                Current address: Harvard Medical School, Boston, Massachusetts, 02115, United States of America


                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                Page count
                Figures: 6, Tables: 1, Pages: 20
                Funding was provided by grants from the Andrew W. Mellon Foundation at Cornell University (MMLU), the Sarah Bradley Fellowship (MMLU), the Cornell Biology Research Fellowship Program (CKS), and awards from the National Science Foundation (DEB-0814544 and DEB-0742998 to BND). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Research Article
                Custom metadata
                A file with raw microsatellite genotypes is available in Dryad:



                Comment on this article