22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interferon-Alpha Reduces Human Hippocampal Neurogenesis and Increases Apoptosis via Activation of Distinct STAT1-Dependent Mechanisms

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In humans, interferon-α treatment for chronic viral hepatitis is a well-recognized clinical model for inflammation-induced depression, but the molecular mechanisms underlying these effects are not clear. Following peripheral administration in rodents, interferon-α induces signal transducer and activator of transcription-1 (STAT1) within the hippocampus and disrupts hippocampal neurogenesis.

          Methods

          We used the human hippocampal progenitor cell line HPC0A07/03C to evaluate the effects of 2 concentrations of interferon-α, similar to those observed in human serum during its therapeutic use (500 pg/mL and 5000 pg/mL), on neurogenesis and apoptosis.

          Results

          Both concentrations of interferon-α decreased hippocampal neurogenesis, with the high concentration also increasing apoptosis. Moreover, interferon-α increased the expression of interferon-stimulated gene 15 (ISG15), ubiquitin-specific peptidase 18 (USP18), and interleukin-6 (IL-6) via activation of STAT1. Like interferon-α, co-treatment with a combination of ISG15, USP18, and IL-6 was able to reduce neurogenesis and enhance apoptosis via further downstream activation of STAT1. Further experiments showed that ISG15 and USP18 mediated the interferon-α-induced reduction in neurogenesis (potentially through upregulation of the ISGylation-related proteins UBA7, UBE2L6, and HERC5), while IL-6 mediated the interferon-α-induced increase in apoptosis (potentially through downregulation of aquaporin 4). Using transcriptomic analyses, we showed that interferon-α regulated pathways involved in oxidative stress and immune response (e.g., Nuclear Factor (erythroid-derived 2)-like 2 [Nrf2] and interferon regulatory factor [IRF] signaling pathway), neuronal formation (e.g., CAMP response element-binding protein [CREB] signaling), and cell death regulation (e.g., tumor protein(p)53 signaling).

          Conclusions

          We identify novel molecular mechanisms mediating the effects of interferon-α on the human hippocampus potentially involved in inflammation-induced neuropsychiatric symptoms.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Neurogenesis in the Adult Hippocampus.

          Of the neurogenic zones in the adult brain, adult hippocampal neurogenesis attracts the most attention, because it is involved in higher cognitive function, most notably memory processes, and certain affective behaviors. Adult hippocampal neurogenesis is also found in humans at a considerable level and appears to contribute significantly to hippocampal plasticity across the life span, because it is regulated by activity. Adult hippocampal neurogenesis generates new excitatory granule cells in the dentate gyrus, whose axons form the mossy fiber tract that links the dentate gyrus to CA3. It originates from a population of radial glia-like precursor cells (type 1 cells) that have astrocytic properties, express markers of neural stem cells and divide rarely. They give rise to intermediate progenitor cells with first glial (type 2a) and then neuronal (type 2b) phenotype. Through a migratory neuroblast-like stage (type 3), the newborn, lineage-committed cells exit the cell cycle and enter a maturation stage, during which they extend their dendrites into a the molecular layer and their axon to CA3. They go through a period of several weeks, during which they show increased synaptic plasticity, before finally becoming indistinguishable from the older granule cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function.

            Aging-associated cognitive decline is affected by factors produced inside and outside the brain. By using multiorgan genome-wide analysis of aged mice, we found that the choroid plexus, an interface between the brain and the circulation, shows a type I interferon (IFN-I)-dependent gene expression profile that was also found in aged human brains. In aged mice, this response was induced by brain-derived signals, present in the cerebrospinal fluid. Blocking IFN-I signaling within the aged brain partially restored cognitive function and hippocampal neurogenesis and reestablished IFN-II-dependent choroid plexus activity, which is lost in aging. Our data identify a chronic aging-induced IFN-I signature, often associated with antiviral response, at the brain's choroid plexus and demonstrate its negative influence on brain function, thereby suggesting a target for ameliorating cognitive decline in aging. Copyright © 2014, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gp130 and the interleukin-6 family of cytokines.

              Receptors for most interleukins and cytokines that regulate immune and hematopoietic systems belong to the class I cytokine receptor family. These molecules form multichain receptor complexes in order to exhibit high-affinity binding to, and mediate biological functions of, their respective cytokines. In most cases, these functional receptor complexes share common signal transducing receptor components that are also in the class I cytokine receptor family, i.e. gp130, common beta, and common gamma molecules. Interleukin-6 and related cytokines, interleukin-11, leukemia inhibitory factor, oncostatin M, ciliary neurotrophic factor, and cardiotrophin-1 are all pleiotropic and exhibit overlapping biological functions. Functional receptor complexes for this interleukin-6 family of cytokines share gp130 as a component critical for signal transduction. Unlike cytokines sharing common beta and common gamma chains that mainly function in hematopoietic and lymphoid cell systems, the interleukin-6 family of cytokines function extensively outside these systems as well, e.g. from the cardiovascular to the nervous system, owing to ubiquitously expressed gp130. Stimulation of cells with the interleukin-6 family of cytokines triggers homo- or hetero-dimerization of gp130. Although gp130 and its dimer partners possess no intrinsic tyrosine kinase domain, the dimerization of gp130 leads to activation of associated cytoplasmic tyrosine kinases and subsequent modification of transcription factors. This paper reviews recent progress in the study of the interleukin-6 family of cytokines and gp130.
                Bookmark

                Author and article information

                Journal
                Int J Neuropsychopharmacol
                Int. J. Neuropsychopharmacol
                ijnp
                International Journal of Neuropsychopharmacology
                Oxford University Press (US )
                1461-1457
                1469-5111
                February 2018
                10 October 2017
                10 October 2017
                : 21
                : 2
                : 187-200
                Affiliations
                [1 ]Section of Stress, Psychiatry and Immunology and Perinatal Psychiatry, King’s College London, London, United Kingdom
                [2 ]Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, London, United Kingdom
                [3 ]IRCCS Fatebenefratelli Institute, Biological Psychiatry Laboratory, Brescia, Italy
                [4 ]King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, United Kingdom
                [5 ]University of Sussex, Department of Neuroscience, Brighton and Sussex Medical School, Brighton, United Kingdom
                Author notes

                P.A.Z. and C.M.P. contributed equally to the paper.

                Correspondence: Alessandra Borsini, PhD, Stress, Psychiatry and Immunology Lab and Perinatal Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King’s College London, Cutcombe Road, London, SE5 9RT ( alessandra.borsini@ 123456kcl.ac.uk ).
                Author information
                http://orcid.org/0000-0002-9584-3769
                Article
                pyx083
                10.1093/ijnp/pyx083
                5793815
                29040650
                05417901-fd1c-4a20-abd2-511f41265477
                © The Author(s) 2017. Published by Oxford University Press on behalf of CINP.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 June 2017
                : 03 August 2017
                : 13 September 2017
                Page count
                Pages: 14
                Funding
                Funded by: National Institute for Health Research 10.13039/501100000272
                Funded by: Department of Health 10.13039/501100000276
                Funded by: Alzheimer’s Society 10.13039/501100000143
                Categories
                Regular Research Articles
                Editor's Choice

                Pharmacology & Pharmaceutical medicine
                apoptosis,depression,inflammation,interferon-alpha,neurogenesis

                Comments

                Comment on this article