27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An aptamer-based keypad lock system

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An aptamer-based security system mimicking keypad lock function was successfully designed. The system was turned "ON" with a strong fluorescent output signal only when the inputs were added according to the correct combination and exact sequence. Otherwise, the system was kept "OFF" to prevent illegal access.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Programmable and autonomous computing machine made of biomolecules.

          Devices that convert information from one form into another according to a definite procedure are known as automata. One such hypothetical device is the universal Turing machine, which stimulated work leading to the development of modern computers. The Turing machine and its special cases, including finite automata, operate by scanning a data tape, whose striking analogy to information-encoding biopolymers inspired several designs for molecular DNA computers. Laboratory-scale computing using DNA and human-assisted protocols has been demonstrated, but the realization of computing devices operating autonomously on the molecular scale remains rare. Here we describe a programmable finite automaton comprising DNA and DNA-manipulating enzymes that solves computational problems autonomously. The automaton's hardware consists of a restriction nuclease and ligase, the software and input are encoded by double-stranded DNA, and programming amounts to choosing appropriate software molecules. Upon mixing solutions containing these components, the automaton processes the input molecule via a cascade of restriction, hybridization and ligation cycles, producing a detectable output molecule that encodes the automaton's final state, and thus the computational result. In our implementation 1012 automata sharing the same software run independently and in parallel on inputs (which could, in principle, be distinct) in 120 microl solution at room temperature at a combined rate of 109 transitions per second with a transition fidelity greater than 99.8%, consuming less than 10-10 W.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A sodium-potassium switch in the formation of four-stranded G4-DNA.

            Single-stranded complex guanine-rich DNA sequences from chromosomal telomeres and elsewhere can associate to form stable parallel four-stranded structures termed G4-DNA by a process that is anomalously dependent on the particular alkali metal cation that is present. The anomaly, which is not found in the formation of G4-DNA by oligonucleotides containing short, single runs of three or more guanines, is caused by potassium cations excessively stabilizing fold-back intermediate structures, or pathway by-products.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A molecular keypad lock: a photochemical device capable of authorizing password entries.

              This paper describes a new concept in the way information can be protected at the molecular scale. By harnessing the principles of molecular Boolean logic, we have designed a molecular device that mimics the operation of an electronic keypad lock, e.g., a common security circuit used for numerous applications, in which access to an object or data is to be restricted to a limited number of persons. What distinguishes this lock from a simple molecular logic gate is the fact that its output signals are dependent not only on the proper combination of the inputs but also on the correct order by which these inputs are introduced. In other words, one needs to know the exact passwords that open this lock. The different password entries are coded by a combination of two chemical and one optical input signals, which can activate, separately, blue or green fluorescence output channels from pyrene or fluorescein fluorophores. The information in each channel is a single-bit light output signal that can be used to authorize a user, to verify authentication of a product, or to initiate a higher process. This development not only opens the way for a new class of molecular decision-making devices but also adds a new dimension of protection to existing defense technologies, such as cryptography and steganography, previously achieved with molecules.
                Bookmark

                Author and article information

                Journal
                CHCOFS
                Chem. Commun.
                Chem. Commun.
                Royal Society of Chemistry (RSC)
                1359-7345
                1364-548X
                2012
                2012
                : 48
                : 6
                : 802-804
                Article
                10.1039/C1CC15979H
                22143462
                05456eb1-83fc-4027-b23d-9e29595bfbe7
                © 2012
                History

                Comments

                Comment on this article