20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pharmacokinetics and pharmacodynamics of cannabinoids.

      Clinical Pharmacokinetics

      Biological Availability, Cannabinoids, pharmacokinetics, pharmacology, therapeutic use, Clinical Trials as Topic, Dronabinol, administration & dosage, chemistry, Drug Administration Routes, Drug Interactions, Humans, Marijuana Abuse, Phytotherapy, Plant Preparations, Receptors, Cannabinoid, Receptors, Drug, drug effects

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Delta(9)-Tetrahydrocannabinol (THC) is the main source of the pharmacological effects caused by the consumption of cannabis, both the marijuana-like action and the medicinal benefits of the plant. However, its acid metabolite THC-COOH, the non-psychotropic cannabidiol (CBD), several cannabinoid analogues and newly discovered modulators of the endogenous cannabinoid system are also promising candidates for clinical research and therapeutic uses. Cannabinoids exert many effects through activation of G-protein-coupled cannabinoid receptors in the brain and peripheral tissues. Additionally, there is evidence for non-receptor-dependent mechanisms. Natural cannabis products and single cannabinoids are usually inhaled or taken orally; the rectal route, sublingual administration, transdermal delivery, eye drops and aerosols have only been used in a few studies and are of little relevance in practice today. The pharmacokinetics of THC vary as a function of its route of administration. Pulmonary assimilation of inhaled THC causes a maximum plasma concentration within minutes, psychotropic effects start within seconds to a few minutes, reach a maximum after 15-30 minutes, and taper off within 2-3 hours. Following oral ingestion, psychotropic effects set in with a delay of 30-90 minutes, reach their maximum after 2-3 hours and last for about 4-12 hours, depending on dose and specific effect. At doses exceeding the psychotropic threshold, ingestion of cannabis usually causes enhanced well-being and relaxation with an intensification of ordinary sensory experiences. The most important acute adverse effects caused by overdosing are anxiety and panic attacks, and with regard to somatic effects increased heart rate and changes in blood pressure. Regular use of cannabis may lead to dependency and to a mild withdrawal syndrome. The existence and the intensity of possible long-term adverse effects on psyche and cognition, immune system, fertility and pregnancy remain controversial. They are reported to be low in humans and do not preclude legitimate therapeutic use of cannabis-based drugs. Properties of cannabis that might be of therapeutic use include analgesia, muscle relaxation, immunosuppression, sedation, improvement of mood, stimulation of appetite, antiemesis, lowering of intraocular pressure, bronchodilation, neuroprotection and induction of apoptosis in cancer cells.

          Related collections

          Most cited references 3

          • Record: found
          • Abstract: found
          • Article: not found

          Cannabinoids reduce levodopa-induced dyskinesia in Parkinson's disease: a pilot study.

          The lateral segment of the globus pallidus (GPl) is thought to be overactive in levodopa-induced dyskinesia in PD. Stimulation of cannabinoid receptors in the GPl reduces gamma-aminobutyric acid (GABA) reuptake and enhances GABA transmission and may thus alleviate dyskinesia. In a randomized, double-blind, placebo-controlled, crossover trial (n = 7), the authors demonstrate that the cannabinoid receptor agonist nabilone significantly reduces levodopa-induced dyskinesia in PD.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Analgesic Effect of Delta-9-Tetrahydrocannabinol

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bronchodilator effect of delta1-tetrahydrocannabinol.

              1 delta1-trans-tetrahydrocannabinol, (delta1-THC) produces bronchodilatation in asthmatic patients. 2 Administered in 62 microliter metered volumes containing 50--200 microgram by inhalation from an aerosol device to patients judged to be in a steady state, it increased peak expiratory flow rate (PEFR) and forced expiratory volume in 1 second (FEV1). 3 The rate of onset, magnitude, and duration of the bronchodilator effect was dose related.
                Bookmark

                Author and article information

                Journal
                12648025
                10.2165/00003088-200342040-00003

                Comments

                Comment on this article