73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supplemental Digital Content is available in the text.

          Abstract

          Competing risks occur frequently in the analysis of survival data. A competing risk is an event whose occurrence precludes the occurrence of the primary event of interest. In a study examining time to death attributable to cardiovascular causes, death attributable to noncardiovascular causes is a competing risk. When estimating the crude incidence of outcomes, analysts should use the cumulative incidence function, rather than the complement of the Kaplan-Meier survival function. The use of the Kaplan-Meier survival function results in estimates of incidence that are biased upward, regardless of whether the competing events are independent of one another. When fitting regression models in the presence of competing risks, researchers can choose from 2 different families of models: modeling the effect of covariates on the cause-specific hazard of the outcome or modeling the effect of covariates on the cumulative incidence function. The former allows one to estimate the effect of the covariates on the rate of occurrence of the outcome in those subjects who are currently event free. The latter allows one to estimate the effect of covariates on the absolute risk of the outcome over time. The former family of models may be better suited for addressing etiologic questions, whereas the latter model may be better suited for estimating a patient’s clinical prognosis. We illustrate the application of these methods by examining cause-specific mortality in patients hospitalized with heart failure. Statistical software code in both R and SAS is provided.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Book: not found

          Modeling Survival Data: Extending the Cox Model

          This is a book for statistical practitioners, particularly those who design and analyze studies for survival and event history data. Its goal is to extend the toolkit beyond the basic triad provided by most statistical packages: the Kaplan-Meier estimator, log-rank test, and Cox regression model. Building on recent developments motivated by counting process and martingale theory, it shows the reader how to extend the Cox model to analyse multiple/correlated event data using marginal and random effects (frailty) models. It covers the use of residuals and diagnostic plots to identify influential or outlying observations, assess proportional hazards and examine other aspects of goodness of fit. Other topics include time-dependent covariates and strata, discontinuous intervals of risk, multiple time scales, smoothing and regression splines, and the computation of expected survival curves. A knowledge of counting processes and martingales is not assumed as the early chapters provide an introduction to this area. The focus of the book is on actual data examples, the analysis and interpretation of the results, and computation. The methods are now readily available in SAS and S-Plus and this book gives a hands-on introduction, showing how to implement them in both packages, with worked examples for many data sets. The authors call on their extensive experience and give practical advice, including pitfalls to be avoided. Terry Therneau is Head of the Section of Biostatistics, Mayo Clinic, Rochester, Minnesota. He is actively involved in medical consulting, with emphasis in the areas of chronic liver disease, physical medicine, hematology, and laboratory medicine, and is an author on numerous papers in medical and statistical journals. He wrote two of the original SAS procedures for survival analysis (coxregr and survtest), as well as the majority of the S-Plus survival functions. Patricia Grambsch is Associate Professor in the Division of Biostatistics, School of Public Health, University of Minnesota. She has collaborated extensively with physicians and public health researchers in chronic liver disease, cancer prevention, hypertension clinical trials and psychiatric research. She is a fellow the American Statistical Association and the author of many papers in medical and statistical journals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Competing risks and the clinical community: irrelevance or ignorance?

            Life expectancy has dramatically increased in industrialized nations over the last 200 hundred years. The aging of populations carries over to clinical research and leads to an increasing representation of elderly and multimorbid individuals in study populations. Clinical research in these populations is complicated by the fact that individuals are likely to experience several potential disease endpoints that prevent some disease-specific endpoint of interest from occurrence. Large developments in competing risks methodology have been achieved over the last decades, but we assume that recognition of competing risks in the clinical community is still marginal. It is the aim of this article to address translational aspects of competing risks to the clinical community. We describe clinical populations where competing risks issues may arise. We then discuss the importance of agreement between the competing risks methodology and the study aim, in particular the distinction between etiologic and prognostic research questions. In a review of 50 clinical studies performed in individuals susceptible to competing risks published in high-impact clinical journals, we found competing risks issues in 70% of all articles. Better recognition of issues related to competing risks and of statistical methods that deal with competing risks in accordance with the aim of the study is needed. Copyright © 2011 John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Competing risks analyses: objectives and approaches

              Studies in cardiology often record the time to multiple disease events such as death, myocardial infarction, or hospitalization. Competing risks methods allow for the analysis of the time to the first observed event and the type of the first event. They are also relevant if the time to a specific event is of primary interest but competing events may preclude its occurrence or greatly alter the chances to observe it. We give a non-technical overview of competing risks concepts for descriptive and regression analyses. For descriptive statistics, the cumulative incidence function is the most important tool. For regression modelling, we introduce regression models for the cumulative incidence function and the cause-specific hazard function, respectively. We stress the importance of choosing statistical methods that are appropriate if competing risks are present. We also clarify the role of competing risks for the analysis of composite endpoints.
                Bookmark

                Author and article information

                Journal
                Circulation
                Circulation
                CIR
                Circulation
                Lippincott Williams & Wilkins
                0009-7322
                1524-4539
                9 February 2016
                08 February 2016
                : 133
                : 6
                : 601-609
                Affiliations
                From Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada (P.C.A., D.S.L.); Institute of Health Management, Policy and Evaluation, University of Toronto, Ontario, Canada (P.C.A., D.S.L.); Schulich Heart Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada (P.C.A.); Department of Medicine, University of Toronto, Ontario, Canada (D.S.L.); Peter Munk Cardiac Center, Department of Medicine, and the Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada (D.S.L.); Department of Biostatistics, University of North Carolina, Chapel Hill, NC (J.P.F.); and Department of Statistics & Operations Research, University of North Carolina, Chapel Hill (J.P.F.).
                Author notes
                Correspondence to Peter Austin, PhD, Institute for Clinical Evaluative Sciences, G106, 2075 Bayview Ave, Toronto, ON, M4N 3M5 Canada. E-mail peter.austin@ 123456ices.on.ca
                Article
                00010
                10.1161/CIRCULATIONAHA.115.017719
                4741409
                26858290
                0553fd10-701b-4bf6-aed4-0ea6cf3a98a5
                © 2016 The Authors.

                Circulation is published on behalf of the American Heart Association, Inc., by Wolters Kluwer. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDervis License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited, the use is noncommercial, and no modifications or adaptations are made.

                History
                Categories
                10093
                Statistical Primer for Cardiovascular Research
                Custom metadata
                TRUE

                cumulative incidence function,data interpretation, statistical,incidence,models, statistical,proportional hazards models,risk assessment,survival analysis

                Comments

                Comment on this article