9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Physical activity, cardiorespiratory fitness, and cardiovascular health: A clinical practice statement of the American Society for Preventive Cardiology Part II: Physical activity, cardiorespiratory fitness, minimum and goal intensities for exercise training, prescriptive methods, and special patient populations

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The prescription of exercise for individuals with and without cardiovascular disease (CVD) should be scientifically-based yet adapted to the patient. This scientific statement reviews the clinical and physiologic basis for the prescription of exercise, with specific reference to the volume of physical activity (PA) and level of cardiorespiratory fitness (CRF) that confer significant and optimal cardioprotective benefits. Recommendations are provided regarding the appropriate intensity, frequency, and duration of training; the concept of MET-minutes per week; critical components of the exercise session (warm-up, conditioning phase, cool-down); methodologies for establishing the training intensity, including oxygen uptake reserve (V̇O 2R), target heart rate derivation and rating perceived exertion; minimum and goal intensities for exercise training; and, types of training activities, including resistance training, adjunctive lifestyle PA, marathon/triathlon training, and high-intensity interval training. In addition, we discuss the rationale for and value of exercise training programs for patients with peripheral artery disease, diabetes mellitus, and heart failure.

          Graphical Abstract

          Related collections

          Most cited references163

          • Record: found
          • Abstract: found
          • Article: not found

          Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.

          Type 2 diabetes affects approximately 8 percent of adults in the United States. Some risk factors--elevated plasma glucose concentrations in the fasting state and after an oral glucose load, overweight, and a sedentary lifestyle--are potentially reversible. We hypothesized that modifying these factors with a lifestyle-intervention program or the administration of metformin would prevent or delay the development of diabetes. We randomly assigned 3234 nondiabetic persons with elevated fasting and post-load plasma glucose concentrations to placebo, metformin (850 mg twice daily), or a lifestyle-modification program with the goals of at least a 7 percent weight loss and at least 150 minutes of physical activity per week. The mean age of the participants was 51 years, and the mean body-mass index (the weight in kilograms divided by the square of the height in meters) was 34.0; 68 percent were women, and 45 percent were members of minority groups. The average follow-up was 2.8 years. The incidence of diabetes was 11.0, 7.8, and 4.8 cases per 100 person-years in the placebo, metformin, and lifestyle groups, respectively. The lifestyle intervention reduced the incidence by 58 percent (95 percent confidence interval, 48 to 66 percent) and metformin by 31 percent (95 percent confidence interval, 17 to 43 percent), as compared with placebo; the lifestyle intervention was significantly more effective than metformin. To prevent one case of diabetes during a period of three years, 6.9 persons would have to participate in the lifestyle-intervention program, and 13.9 would have to receive metformin. Lifestyle changes and treatment with metformin both reduced the incidence of diabetes in persons at high risk. The lifestyle intervention was more effective than metformin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise.

            The purpose of this Position Stand is to provide guidance to professionals who counsel and prescribe individualized exercise to apparently healthy adults of all ages. These recommendations also may apply to adults with certain chronic diseases or disabilities, when appropriately evaluated and advised by a health professional. This document supersedes the 1998 American College of Sports Medicine (ACSM) Position Stand, "The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Healthy Adults." The scientific evidence demonstrating the beneficial effects of exercise is indisputable, and the benefits of exercise far outweigh the risks in most adults. A program of regular exercise that includes cardiorespiratory, resistance, flexibility, and neuromotor exercise training beyond activities of daily living to improve and maintain physical fitness and health is essential for most adults. The ACSM recommends that most adults engage in moderate-intensity cardiorespiratory exercise training for ≥30 min·d on ≥5 d·wk for a total of ≥150 min·wk, vigorous-intensity cardiorespiratory exercise training for ≥20 min·d on ≥3 d·wk (≥75 min·wk), or a combination of moderate- and vigorous-intensity exercise to achieve a total energy expenditure of ≥500-1000 MET·min·wk. On 2-3 d·wk, adults should also perform resistance exercises for each of the major muscle groups, and neuromotor exercise involving balance, agility, and coordination. Crucial to maintaining joint range of movement, completing a series of flexibility exercises for each the major muscle-tendon groups (a total of 60 s per exercise) on ≥2 d·wk is recommended. The exercise program should be modified according to an individual's habitual physical activity, physical function, health status, exercise responses, and stated goals. Adults who are unable or unwilling to meet the exercise targets outlined here still can benefit from engaging in amounts of exercise less than recommended. In addition to exercising regularly, there are health benefits in concurrently reducing total time engaged in sedentary pursuits and also by interspersing frequent, short bouts of standing and physical activity between periods of sedentary activity, even in physically active adults. Behaviorally based exercise interventions, the use of behavior change strategies, supervision by an experienced fitness instructor, and exercise that is pleasant and enjoyable can improve adoption and adherence to prescribed exercise programs. Educating adults about and screening for signs and symptoms of CHD and gradual progression of exercise intensity and volume may reduce the risks of exercise. Consultations with a medical professional and diagnostic exercise testing for CHD are useful when clinically indicated but are not recommended for universal screening to enhance the safety of exercise.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy.

              Strong evidence shows that physical inactivity increases the risk of many adverse health conditions, including major non-communicable diseases such as coronary heart disease, type 2 diabetes, and breast and colon cancers, and shortens life expectancy. Because much of the world's population is inactive, this link presents a major public health issue. We aimed to quantify the eff ect of physical inactivity on these major non-communicable diseases by estimating how much disease could be averted if inactive people were to become active and to estimate gain in life expectancy at the population level. For our analysis of burden of disease, we calculated population attributable fractions (PAFs) associated with physical inactivity using conservative assumptions for each of the major non-communicable diseases, by country, to estimate how much disease could be averted if physical inactivity were eliminated. We used life-table analysis to estimate gains in life expectancy of the population. Worldwide, we estimate that physical inactivity causes 6% (ranging from 3·2% in southeast Asia to 7·8% in the eastern Mediterranean region) of the burden of disease from coronary heart disease, 7% (3·9-9·6) of type 2 diabetes, 10% (5·6-14·1) of breast cancer, and 10% (5·7-13·8) of colon cancer. Inactivity causes 9% (range 5·1-12·5) of premature mortality, or more than 5·3 million of the 57 million deaths that occurred worldwide in 2008. If inactivity were not eliminated, but decreased instead by 10% or 25%, more than 533 000 and more than 1·3 million deaths, respectively, could be averted every year. We estimated that elimination of physical inactivity would increase the life expectancy of the world's population by 0·68 (range 0·41-0·95) years. Physical inactivity has a major health eff ect worldwide. Decrease in or removal of this unhealthy behaviour could improve health substantially. None.
                Bookmark

                Author and article information

                Contributors
                Journal
                Am J Prev Cardiol
                Am J Prev Cardiol
                American Journal of Preventive Cardiology
                Elsevier
                2666-6677
                13 October 2022
                December 2022
                13 October 2022
                : 12
                : 100425
                Affiliations
                [a ]Preventive Cardiology and Cardiac Rehabilitation, Beaumont Health, Royal Oak, MI, USA
                [b ]Oakland University William Beaumont School of Medicine, Rochester, MI, USA
                [c ]Radboud Institute for Health Sciences, Department of Physiology, Radboud University Medical Center, Nijmegen, the Netherlands
                [d ]Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
                [e ]Integrative Physiology and Athletic Training, University of Montana, Missoula, MT, USA
                [f ]International Heart Institute – St. Patrick's Hospital, Providence Medical Center, Missoula, MT, USA
                [g ]CGH Medical Center, Sterling, IL, USA
                [h ]Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
                Author notes
                [* ]Corresponding author at: Beaumont Health and Wellness Center, Preventive Cardiology and Cardiac Rehabilitation, 4949 Coolidge Highway, Royal Oak, MI 48073, USA. Barry.Franklin@ 123456Beaumont.edu
                Article
                S2666-6677(22)00109-X 100425
                10.1016/j.ajpc.2022.100425
                9586849
                36281325
                055ae82f-ab9c-4b50-b4a2-17f1f48b391f
                © 2022 The Author(s). Published by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 10 April 2022
                : 5 September 2022
                : 6 October 2022
                Categories
                State-of-the-Art Review

                physical activity,cardiorespiratory fitness,exercise prescription,metabolic equivalents,oxygen uptake reserve,marathon/triathlon training,high-intensity interval training,peripheral artery disease,diabetes mellitus,heart failure,physical activity (pa), cardiorespiratory fitness (crf), cardiovascular disease (cvd),, coronary heart disease (chd), rating of perceived exertion (rpe),oxygen uptake reserve (vo2r) , high intensity interval training (hiit)

                Comments

                Comment on this article

                scite_

                Similar content192

                Cited by15

                Most referenced authors3,675