34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mixotrophic Microalgae Biofilm: A Novel Algae Cultivation Strategy for Improved Productivity and Cost-efficiency of Biofuel Feedstock Production

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this work, we studied a novel algae cultivation strategy, mixotrophic microalgae biofilm, to improve the productivity and cost-efficiency of algal biofuel production. In contrast to previous methods, this improved approach can achieve high productivity at low cost by harnessing the benefits of mixotrophic growth’s high efficiency, i.e., capable of subsisting on inorganic and organic carbons thus unaffected by limited light, and microalgae biofilm’s low harvesting cost. Our results, as one of the first studies of this type, proved that microalgae biofilms under mixotrophic condition exhibited significantly higher productivity and quality of biofuel feedstock: 2–3 times higher of biomass yield, 2–10 times higher of lipid accumulation, and 40–60% lower of ash content when compared to microalgae biofilms under autotrophic condition. In addition, we investigated the impact of cell-surface properties (hydrophobicity and roughness) on the growth activities of microalgae biofilms and found that the productivity of mixotrophic biofilms was significantly correlated with the surface hydrophobicity. Finally, our work demonstrated the applicability of integrating this novel cultivation method with wastewater for maximum efficiency. This study opens a new possibility to solve the long-lasting challenges of algal biofuel feedstock production, i.e., low productivity and high cost of algal cultivation.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: not found
          • Article: not found

          Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review.

            Microalgae have the ability to mitigate CO(2) emission and produce oil with a high productivity, thereby having the potential for applications in producing the third-generation of biofuels. The key technologies for producing microalgal biofuels include identification of preferable culture conditions for high oil productivity, development of effective and economical microalgae cultivation systems, as well as separation and harvesting of microalgal biomass and oil. This review presents recent advances in microalgal cultivation, photobioreactor design, and harvesting technologies with a focus on microalgal oil (mainly triglycerides) production. The effects of different microalgal metabolisms (i.e., phototrophic, heterotrophic, mixotrophic, and photoheterotrophic growth), cultivation systems (emphasizing the effect of light sources), and biomass harvesting methods (chemical/physical methods) on microalgal biomass and oil production are compared and critically discussed. This review aims to provide useful information to help future development of efficient and commercially viable technology for microalgae-based biodiesel production. Copyright © 2010 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heterotrophic cultures of microalgae: metabolism and potential products.

              This review analyzes the current state of a specific niche of microalgae cultivation; heterotrophic growth in the dark supported by a carbon source replacing the traditional support of light energy. This unique ability of essentially photosynthetic microorganisms is shared by several species of microalgae. Where possible, heterotrophic growth overcomes major limitations of producing useful products from microalgae: dependency on light which significantly complicates the process, increase costs, and reduced production of potentially useful products. As a general role, and in most cases, heterotrophic cultivation is far cheaper, simpler to construct facilities, and easier than autotrophic cultivation to maintain on a large scale. This capacity allows expansion of useful applications from diverse species that is now very limited as a result of elevated costs of autotrophy; consequently, exploitation of microalgae is restricted to small volume of high-value products. Heterotrophic cultivation may allow large volume applications such as wastewater treatment combined, or separated, with production of biofuels. In this review, we present a general perspective of the field, describing the specific cellular metabolisms involved and the best-known examples from the literature and analyze the prospect of potential products from heterotrophic cultures. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                zhangyl@wayne.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                21 August 2018
                21 August 2018
                2018
                : 8
                : 12528
                Affiliations
                [1 ]ISNI 0000 0001 1456 7807, GRID grid.254444.7, Civil and Environmental Engineering, , Wayne State University, ; 5050 Anthony Wayne Dr., Detroit, MI 48202 USA
                [2 ]ISNI 0000 0001 1456 7807, GRID grid.254444.7, Biological Sciences, , Wayne State University, ; 5047 Gullen Mall, Detroit, MI 48202 USA
                [3 ]ISNI 0000 0001 1456 7807, GRID grid.254444.7, Biochemistry & Molecular Biology, , Wayne State University, ; 4263 Scott Hall, Detroit, MI 48202 USA
                Article
                31016
                10.1038/s41598-018-31016-1
                6104096
                30131525
                05646347-1e16-42f8-a02e-5c6142d3d734
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 April 2018
                : 9 August 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article