12
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microencapsulation as a novel delivery method for the potential antidiabetic drug, Probucol

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          In previous studies, we successfully designed complex multicompartmental microcapsules as a platform for the oral targeted delivery of lipophilic drugs in type 2 diabetes (T2D). Probucol (PB) is an antihyperlipidemic and antioxidant drug with the potential to show benefits in T2D. We aimed to create a novel microencapsulated formulation of PB and to examine the shape, size, and chemical, thermal, and rheological properties of these microcapsules in vitro.

          Method

          Microencapsulation was carried out using the Büchi-based microencapsulating system developed in our laboratory. Using the polymer, sodium alginate (SA), empty (control, SA) and loaded (test, PB-SA) microcapsules were prepared at a constant ratio (1:30). Complete characterizations of microcapsules, in terms of morphology, thermal profiles, dispersity, and spectral studies, were carried out in triplicate.

          Results

          PB-SA microcapsules displayed uniform and homogeneous characteristics with an average diameter of 1 mm. The microcapsules exhibited pseudoplastic-thixotropic characteristics and showed no chemical interactions between the ingredients. These data were further supported by differential scanning calorimetric analysis and Fourier transform infrared spectral studies, suggesting microcapsule stability.

          Conclusion

          The new PB-SA microcapsules have good structural properties and may be suitable for the oral delivery of PB in T2D. Further studies are required to examine the clinical efficacy and safety of PB in T2D.

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.

          The goal of this study was to estimate the prevalence of diabetes and the number of people of all ages with diabetes for years 2000 and 2030. Data on diabetes prevalence by age and sex from a limited number of countries were extrapolated to all 191 World Health Organization member states and applied to United Nations' population estimates for 2000 and 2030. Urban and rural populations were considered separately for developing countries. The prevalence of diabetes for all age-groups worldwide was estimated to be 2.8% in 2000 and 4.4% in 2030. The total number of people with diabetes is projected to rise from 171 million in 2000 to 366 million in 2030. The prevalence of diabetes is higher in men than women, but there are more women with diabetes than men. The urban population in developing countries is projected to double between 2000 and 2030. The most important demographic change to diabetes prevalence across the world appears to be the increase in the proportion of people >65 years of age. These findings indicate that the "diabetes epidemic" will continue even if levels of obesity remain constant. Given the increasing prevalence of obesity, it is likely that these figures provide an underestimate of future diabetes prevalence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            International statistical classification of diseases and related health problems. Tenth revision.

            G Brämer (1988)
            The International Classification of Diseases has, under various names, been for many decades the essential tool for national and international comparability in public health. This statistical tool has been customarily revised every 10 years in order to keep up with the advances of medicine. At first intended primarily for the classification of causes of death, its scope has been progressively widening to include coding and tabulation of causes of morbidity as well as medical record indexing and retrieval. The ability to exchange comparable data from region to region and from country to country, to allow comparison from one population to another and to permit study of diseases over long periods, is one of the strengths of the International Statistical Classification of Diseases, Injuries, and Causes of Death (ICD). WHO has been responsible for the organization, coordination and execution of activities related to ICD since 1948 (Sixth Revision of the ICD) and is now proceeding with the Tenth Revision. For the first time in its history the ICD will be based on an alphanumeric coding scheme and will have to function as a core classification from which a series of modules can be derived, each reaching a different degree of specificity and adapted to a particular specialty or type of user. It is proposed that the chapters on external causes of injury and poisoning, and factors influencing health status and contact with health services, which were supplementary classifications in ICD-9, should form an integral part of ICD-10. The title of ICD has been amended to "International Statistical Classification of Diseases and Related Health Problems"', but the abbreviation "ICD" will be retained.(ABSTRACT TRUNCATED AT 250 WORDS)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential scanning calorimetry techniques: applications in biology and nanoscience.

              This paper reviews the best-known differential scanning calorimetries (DSCs), such as conventional DSC, microelectromechanical systems-DSC, infrared-heated DSC, modulated-temperature DSC, gas flow-modulated DSC, parallel-nano DSC, pressure perturbation calorimetry, self-reference DSC, and high-performance DSC. Also, we describe here the most extensive applications of DSC in biology and nanoscience.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2014
                09 September 2014
                : 8
                : 1221-1230
                Affiliations
                [1 ]Biotechnology and Drug Development Research Laboratory School of Pharmacy, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Perth, Western Australia, Australia
                [2 ]Faculty of Science and Engineering, Curtin University, Perth, Western Australia, Australia
                [3 ]School of Pharmacy, University of Otago, Dunedin, New Zealand
                [4 ]School of Public Health, Curtin University, Perth, Western Australia, Australia
                [5 ]Curtin Health Innovation Research Institute, Biosciences Research Precinct, School of Biomedical Science, Curtin University, Perth, Western Australia, Australia
                [6 ]Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Serbia
                [7 ]Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Serbia
                [8 ]Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
                [9 ]School of Medicine and Pharmacology, Royal Perth Hospital, University of Western Australia
                [10 ]Laboratory for Metabolic Dysfunction, UWA Centre for Medical Research, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
                Author notes
                Correspondence: Hani Al-Salami, Biotechnology and Drug Development Research Laboratory, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Kent Street, Bentley WA 6102, Perth, Western Australia, Australia, Tel +61 8 9266 9816, Fax +61 8 9266 2769, Email hani.al-salami@ 123456curtin.edu.au
                Article
                dddt-8-1221
                10.2147/DDDT.S67349
                4166910
                056c0bae-b289-488f-94a9-f80480b8a9cb
                © 2014 Mooranian et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                artificial cell microencapsulation,diabetes,antioxidant,anti-inflammatory,probucol

                Comments

                Comment on this article