Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AN IMPROVED ARTIFICIAL DENDRITE CELL ALGORITHM FOR ABNORMAL SIGNAL DETECTION

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In dendrite cell algorithm (DCA), the abnormality of a data point is determined by comparing the multi-context antigen value (MCAV) with anomaly threshold. The limitation of the existing threshold is that the value needs to be determined before mining based on previous information and the existing MCAV is inefficient when exposed to extreme values. This causes the DCA fails to detect new data points if the pattern has distinct behavior from previous information and affects detection accuracy. This paper proposed an improved anomaly threshold solution for DCA using the statistical cumulative sum (CUSUM) with the aim to improve its detection capability. In the proposed approach, the MCAV were normalized with upper CUSUM and the new anomaly threshold was calculated during run time by considering the acceptance value and min MCAV. From the experiments towards 12 benchmark and two outbreak datasets, the improved DCA is proven to have a better detection result than its previous version in terms of sensitivity, specificity, false detection rate and accuracy.  

          Related collections

          Author and article information

          Contributors
          Malaysia
          Malaysia
          Malaysia
          Malaysia
          Journal
          Journal of Information and Communication Technology
          UUM Press
          December 26 2017
          : 17
          : 33-54
          Affiliations
          [1 ]School of Computing, Universiti Utara Malaysia, Malaysia
          Article
          8244
          10.32890/jict2018.17.1.8244

          All content is freely available without charge to users or their institutions. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles in this journal without asking prior permission of the publisher or the author. Articles published in the journal are distributed under a http://creativecommons.org/licenses/by/4.0/.

          Comments

          Comment on this article