57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beyond Noise: Using Temporal ICA to Extract Meaningful Information from High-Frequency fMRI Signal Fluctuations during Rest

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Analysis of resting-state networks using fMRI usually ignores high-frequency fluctuations in the BOLD signal – be it because of low TR prohibiting the analysis of fluctuations with frequencies higher than 0.25 Hz (for a typical TR of 2 s), or because of the application of a bandpass filter (commonly restricting the signal to frequencies lower than 0.1 Hz). While the standard model of convolving neuronal activity with a hemodynamic response function suggests that the signal of interest in fMRI is characterized by slow fluctuation, it is in fact unclear whether the high-frequency dynamics of the signal consists of noise only. In this study, 10 subjects were scanned at 3 T during 6 min of rest using a multiband EPI sequence with a TR of 354 ms to critically sample fluctuations of up to 1.4 Hz. Preprocessed data were high-pass filtered to include only frequencies above 0.25 Hz, and voxelwise whole-brain temporal ICA (tICA) was used to identify consistent high-frequency signals. The resulting components include physiological background signal sources, most notably pulsation and heart-beat components, that can be specifically identified and localized with the method presented here. Perhaps more surprisingly, common resting-state networks like the default-mode network also emerge as separate tICA components. This means that high-frequency oscillations sampled with a rather T1-weighted contrast still contain specific information on these resting-state networks to consistently identify them, not consistent with the commonly held view that these networks operate on low-frequency fluctuations alone. Consequently, the use of bandpass filters in resting-state data analysis should be reconsidered, since this step eliminates potentially relevant information. Instead, more specific methods for the elimination of physiological background signals, for example by regression of physiological noise components, might prove to be viable alternatives.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI.

          Parallel imaging in the form of multiband radiofrequency excitation, together with reduced k-space coverage in the phase-encode direction, was applied to human gradient echo functional MRI at 7 T for increased volumetric coverage and concurrent high spatial and temporal resolution. Echo planar imaging with simultaneous acquisition of four coronal slices separated by 44mm and simultaneous 4-fold phase-encoding undersampling, resulting in 16-fold acceleration and up to 16-fold maximal aliasing, was investigated. Task/stimulus-induced signal changes and temporal signal behavior under basal conditions were comparable for multiband and standard single-band excitation and longer pulse repetition times. Robust, whole-brain functional mapping at 7 T, with 2 x 2 x 2mm(3) (pulse repetition time 1.25 sec) and 1 x 1 x 2mm(3) (pulse repetition time 1.5 sec) resolutions, covering fields of view of 256 x 256 x 176 mm(3) and 192 x 172 x 176 mm(3), respectively, was demonstrated with current gradient performance. (c) 2010 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data.

            In subjects performing no specific cognitive task ("resting state"), time courses of voxels within functionally connected regions of the brain have high cross-correlation coefficients ("functional connectivity"). The purpose of this study was to measure the contributions of low frequencies and physiological noise to cross-correlation maps. In four healthy volunteers, task-activation functional MR imaging and resting-state data were acquired. We obtained four contiguous slice locations in the "resting state" with a high sampling rate. Regions of interest consisting of four contiguous voxels were selected. The correlation coefficient for the averaged time course and every other voxel in the four slices was calculated and separated into its component frequency contributions. We calculated the relative amounts of the spectrum that were in the low-frequency (0 to 0.1 Hz), the respiratory-frequency (0.1 to 0.5 Hz), and cardiac-frequency range (0.6 to 1.2 Hz). For each volunteer, resting-state maps that resembled task-activation maps were obtained. For the auditory and visual cortices, the correlation coefficient depended almost exclusively on low frequencies (<0.1 Hz). For all cortical regions studied, low-frequency fluctuations contributed more than 90% of the correlation coefficient. Physiological (respiratory and cardiac) noise sources contributed less than 10% to any functional connectivity MR imaging map. In blood vessels and cerebrospinal fluid, physiological noise contributed more to the correlation coefficient. Functional connectivity in the auditory, visual, and sensorimotor cortices is characterized predominantly by frequencies slower than those in the cardiac and respiratory cycles. In functionally connected regions, these low frequencies are characterized by a high degree of temporal coherence.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Temporally-independent functional modes of spontaneous brain activity.

              Resting-state functional magnetic resonance imaging has become a powerful tool for the study of functional networks in the brain. Even "at rest," the brain's different functional networks spontaneously fluctuate in their activity level; each network's spatial extent can therefore be mapped by finding temporal correlations between its different subregions. Current correlation-based approaches measure the average functional connectivity between regions, but this average is less meaningful for regions that are part of multiple networks; one ideally wants a network model that explicitly allows overlap, for example, allowing a region's activity pattern to reflect one network's activity some of the time, and another network's activity at other times. However, even those approaches that do allow overlap have often maximized mutual spatial independence, which may be suboptimal if distinct networks have significant overlap. In this work, we identify functionally distinct networks by virtue of their temporal independence, taking advantage of the additional temporal richness available via improvements in functional magnetic resonance imaging sampling rate. We identify multiple "temporal functional modes," including several that subdivide the default-mode network (and the regions anticorrelated with it) into several functionally distinct, spatially overlapping, networks, each with its own pattern of correlations and anticorrelations. These functionally distinct modes of spontaneous brain activity are, in general, quite different from resting-state networks previously reported, and may have greater biological interpretability.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                01 May 2013
                2013
                : 7
                : 168
                Affiliations
                [1] 1Center for Medical Physics and Biomedical Engineering, Medical University of Vienna Vienna, Austria
                [2] 2MR Centre of Excellence, Medical University of Vienna Vienna, Austria
                [3] 3Department of Statistics and Probability Theory, Vienna University of Technology Vienna, Austria
                [4] 4Department of Psychiatry and Psychotherapy, Medical University of Vienna Vienna, Austria
                [5] 5Department of Radiodiagnostics and Nuclear Medicine, Medical University of Vienna Vienna, Austria
                Author notes

                Edited by: Simon Daniel Robinson, Medical University of Vienna, Austria

                Reviewed by: Shanqing Cai, Boston University, USA; Erik Beall, Cleveland Clinic, USA

                *Correspondence: Roland N. Boubela, MR Centre of Excellence, Centre of Medical Physics and Biomedical Engineering, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria. e-mail: roland.boubela@ 123456meduniwien.ac.at

                Roland N. Boubela and Klaudius Kalcher have contributed equally to this work.

                Article
                10.3389/fnhum.2013.00168
                3640215
                23641208
                0574618c-36bf-47e3-be28-d8d31c441245
                Copyright © 2013 Boubela, Kalcher, Huf, Kronnerwetter, Filzmoser and Moser.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 16 January 2013
                : 16 April 2013
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 45, Pages: 12, Words: 6946
                Categories
                Neuroscience
                Original Research

                Neurosciences
                resting-state fmri,temporal ica,heart rate variability,resting-state networks
                Neurosciences
                resting-state fmri, temporal ica, heart rate variability, resting-state networks

                Comments

                Comment on this article