21
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      Are you tired of sifting through news that doesn't interest you?
      Personalize your Karger newsletter today and get only the news that matters to you!

      Sign up

      • Record: found
      • Abstract: found
      • Article: found

      Coordinated Expression of Ets-1, pERK1/2, and VEGF in Retina of Streptozotocin-Induced Diabetic Rats

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: To investigate the role played by E26 transformation-specific-1 (Ets-1), a transcription factor, and extracellular signal-regulated kinase 1/2 (ERK1/2) in the expression of vascular endothelial growth factor (VEGF), and the interaction of Ets-1 and ERK1/2 in the retina of diabetic rats. Methods: Diabetes was induced in rats by an intraperitoneal injection of streptozotocin (STZ). To follow the time course in the expression of Ets-1, phosphorylated ERK1/2 (pERK1/2), and VEGF, rats were killed at 1, 2, 4, and 8 weeks after the injection of STZ, and total proteins were extracted from the isolated retinas. An adenovirus vector encoding dominant-negative Ets-1 and an inhibitor of PD98059 was injected intravitreally to investigate the effects of Ets-1 blockade and ERK1/2 inhibition on the expression of VEGF. Four weeks after the first intravitreal injection, total proteins and total RNA were extracted from the retinas for Western blot and Northern blot analyses. Results: The expression of Ets-1, pERK1/2, and VEGF in the retina increased in a time-dependent manner after STZ injection. The phosphorylation of ERK1/2 and protein level of VEGF were significantly reduced following intravitreal Ets-1. Inhibition of ERK1/2 phosphorylation resulted in a significant reduction in the expression of Ets-1 and the level of VEGF protein. Conclusions: These results indicate that in the retina of STZ-induced diabetic rats: (1) the alterations of Ets-1, pERK1/2, and VEGF are approximately synchronized; (2) the phosphorylation of ERK1/2 is regulated by the expression of Ets-1; (3) the production of Ets-1 protein is dependent on the ERK1/2 pathway, and (4) the protein level of VEGF is regulated by both Ets-1 expression and ERK1/2 phosphorylation. We propose that VEGF, Ets-1, and ERK1/2 act synergistically in the development of diabetic retinopathy.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The ETS-domain transcription factor family.

          ETS-domain transcription-factor networks represent a model for how combinatorial gene expression is achieved. These transcription factors interact with a multitude of co-regulatory partners to elicit gene-specific responses and drive distinct biological processes. These proteins are controlled by a complex series of inter and intramolecular interactions, and signalling pathways impinge on these proteins to further regulate their action.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins.

            The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P < 0.006) or hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-microns section averaged 47% +/- 4% (P < 0.001) and 37% +/- 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66%, respectively. No retinal toxicity was observed by light microscopy. These data demonstrate VEGF's causal role in retinal angiogenesis and prove the potential of VEGF inhibition as a specific therapy for ischemic retinal disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor.

              Vascular endothelial cell growth factor (VEGF), also known as vascular permeability factor, is an endothelial cell mitogen which stimulates angiogenesis. Here we report that a previously identified receptor tyrosine kinase gene, KDR, encodes a receptor for VEGF. Expression of KDR in CMT-3 (cells which do not contain receptors for VEGF) allows for saturable 125I-VEGF binding with high affinity (KD = 75 pM). Affinity cross-linking of 125I-VEGF to KDR-transfected CMT-3 cells results in specific labeling of two proteins of M(r) = 195 and 235 kDa. The KDR receptor tyrosine kinase shares structural similarities with a recently reported receptor for VEGF, flt, in a manner reminiscent of the similarities between the alpha and beta forms of the PDGF receptors.
                Bookmark

                Author and article information

                Journal
                ORE
                Ophthalmic Res
                10.1159/issn.0030-3747
                Ophthalmic Research
                S. Karger AG
                0030-3747
                1423-0259
                2007
                August 2007
                29 June 2007
                : 39
                : 4
                : 224-231
                Affiliations
                aDepartment of Ophthalmology, Xijing Hospital, bInstitute of Neurosciences of Chinese PLA, the Fourth Military Medical University, Xi’an, China; cDepartment of Ophthalmology, Graduate School of Medicine, Osaka University, Suita, Japan
                Article
                104831 Ophthalmic Res 2007;39:224–231
                10.1159/000104831
                17622743
                057cffb3-7e33-48d2-a45d-30f31de6e5af
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 02 February 2007
                : 15 May 2007
                Page count
                Figures: 4, References: 44, Pages: 8
                Categories
                Original Paper

                Vision sciences,Ophthalmology & Optometry,Pathology
                Angiogenesis,Diabetic retinopathy,Vascular endothelial growth factor,Extracellular signal-regulated kinase 1/2,E26 transformation-specific-1

                Comments

                Comment on this article