6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Predisposition to Breast and Ovarian Cancers: How Many and Which Genes to Test?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast and ovarian cancers are some of the most common tumors in females, and the genetic predisposition is emerging as one of the key risk factors in the development of these two malignancies. BRCA1 and BRCA2 are the best-known genes associated with hereditary breast and ovarian cancer. However, recent advances in molecular techniques, Next-Generation Sequencing in particular, have led to the identification of many new genes involved in the predisposition to breast and/or ovarian cancer, with different penetrance estimates. TP53, PTEN, STK11, and CDH1 have been identified as high penetrance genes for the risk of breast/ovarian cancers. Besides them, PALB2, BRIP1, ATM, CHEK2, BARD1, NBN, NF1, RAD51C, RAD51D and mismatch repair genes have been recognized as moderate and low penetrance genes, along with other genes encoding proteins involved in the same pathways, possibly associated with breast/ovarian cancer risk. In this review, we summarize the past and more recent findings in the field of cancer predisposition genes, with insights into the role of the encoded proteins and the associated genetic disorders. Furthermore, we discuss the possible clinical utility of genetic testing in terms of prevention protocols and therapeutic approaches.

          Related collections

          Most cited references230

          • Record: found
          • Abstract: found
          • Article: not found

          Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial.

          Olaparib is a novel, orally active poly(ADP-ribose) polymerase (PARP) inhibitor that induces synthetic lethality in homozygous BRCA-deficient cells. We aimed to assess the efficacy and safety of olaparib for treatment of advanced ovarian cancer in patients with BRCA1 or BRCA2 mutations. In this international, multicentre, phase 2 study, we enrolled two sequential cohorts of women (aged >or=18 years) with confirmed genetic BRCA1 or BRCA2 mutations, and recurrent, measurable disease. The study was undertaken in 12 centres in Australia, Germany, Spain, Sweden, and the USA. The first cohort (n=33) was given continuous oral olaparib at the maximum tolerated dose of 400 mg twice daily, and the second cohort (n=24) was given continuous oral olaparib at 100 mg twice daily. The primary efficacy endpoint was objective response rate (ORR). This study is registered with ClinicalTrials.gov, number NCT00494442. Patients had been given a median of three (range 1-16) previous chemotherapy regimens. ORR was 11 (33%) of 33 patients (95% CI 20-51) in the cohort assigned to olaparib 400 mg twice daily, and three (13%) of 24 (4-31) in the cohort assigned to 100 mg twice daily. In patients given olaparib 400 mg twice daily, the most frequent causally related adverse events were nausea (grade 1 or 2, 14 [42%]; grade 3 or 4, two [6%]), fatigue (grade 1 or 2, ten [30%]; grade 3 or 4, one [3%]), and anaemia (grade 1 or two, five [15%]; grade 3 or 4, one [3%]). The most frequent causally related adverse events in the cohort given 100 mg twice daily were nausea (grade 1 or 2, seven [29%]; grade 3 or 4, two [8%]) and fatigue (grade 1 or 2, nine [38%]; none grade 3 or 4). Findings from this phase 2 study provide positive proof of concept of the efficacy and tolerability of genetically targeted treatment with olaparib in BRCA-mutated advanced ovarian cancer. AstraZeneca. Copyright 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cell-cell adhesion molecule E-cadherin.

            This review is dedicated to E-cadherin, a calcium-dependent cell-cell adhesion molecule with pivotal roles in epithelial cell behavior, tissue formation, and suppression of cancer. As founder member of the cadherin superfamily, it has been extensively investigated. We summarize the structure and regulation of the E-cadherin gene and transcript. Models for E-cadherin-catenin complexes and cell junctions are presented. The structure of the E-cadherin protein is discussed in view of the diverse functions of this remarkable protein. Homophilic and heterophilic adhesion are compared, including the role of E-cadherin as a receptor for pathogens. The complex post-translational processing of E-cadherin is reviewed, as well as the many signaling activities. The role of E-cadherin in embryonic development and morphogenesis is discussed for several animal models. Finally, we review the multiple mechanisms that disrupt E-cadherin function in cancer: inactivating somatic and germline mutations, epigenetic silencing by DNA methylation and epithelial to mesenchymal transition-inducing transcription factors, and dysregulated protein processing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas.

              Hallmarks of germline BRCA1/2-associated ovarian carcinomas include chemosensitivity and improved survival. The therapeutic impact of somatic BRCA1/2 mutations and mutations in other homologous recombination DNA repair genes is uncertain.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                08 February 2020
                February 2020
                : 21
                : 3
                : 1128
                Affiliations
                [1 ]Biostatistics and Clinical Trials Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; davide.angeli@ 123456irst.emr.it
                [2 ]Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; samantasalvi@ 123456gmail.com
                Author notes
                [* ]Correspondence: gianluca.tedaldi@ 123456irst.emr.it ; Tel.: +39-0543-739232
                Author information
                https://orcid.org/0000-0002-8855-0829
                https://orcid.org/0000-0003-0540-6694
                Article
                ijms-21-01128
                10.3390/ijms21031128
                7038038
                32046255
                057f95d6-68d8-4602-bfde-eb9855eadba1
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 December 2019
                : 05 February 2020
                Categories
                Review

                Molecular biology
                hereditary breast and ovarian cancer,gene panels,cancer predisposition,next-generation sequencing,cancer risk

                Comments

                Comment on this article