32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined Role of Seizure-Induced Dendritic Morphology Alterations and Spine Loss in Newborn Granule Cells with Mossy Fiber Sprouting on the Hyperexcitability of a Computer Model of the Dentate Gyrus

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, mossy fiber sprouting increases the excitability of the circuit while dendritic spine loss may have the opposite effect. However, the effect of the interplay of these different morphological alterations on the hyperexcitability of the dentate gyrus is still unknown. Here we adapted an existing computational model of the dentate gyrus by replacing the reduced granule cell models with morphologically detailed models coming from three-dimensional reconstructions of mature cells. The model simulates a network with 10% of the mossy fiber sprouting observed in the pilocarpine (PILO) model of epilepsy. Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase.

          Author Summary

          Neurogenesis is currently a well known phenomenon in the adult brain, in special in some areas such as the subventricular zone and the dentate gyrus in the hippocampus, in which different endogenous and exogenous factors provoke cell proliferation. In the specific case of the dentate gyrus, granule cells proliferate exhibiting altered morphology after the induction of Status Epilepticus (SE) by pilocarpine (PILO). Several days after the injury the new cells show different morphological alterations, for example, in dendritic spines and branching patterns, as well as with the formation of axonal sprouting. The way in which these new cells are integrated into the hippocampus is still unknown with conflicting data in the literature. Here we used computer simulation to test if the activity of the dentate gyrus is affected by the presence of different proportions of new cells after PILO-induced SE. Our results show that the specific morphological alterations present in the granule cells in rats with PILO-induced SE may be responsible for increasing (mossy fiber sprouting) or decreasing (spine loss) the activity in the network. The imbalance between these effects may be manifest as an epileptiform network behavior.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Influence of dendritic structure on firing pattern in model neocortical neurons.

          Neocortical neurons display a wide range of dendritic morphologies, ranging from compact arborizations to highly elaborate branching patterns. In vitro electrical recordings from these neurons have revealed a correspondingly diverse range of intrinsic firing patterns, including non-adapting, adapting and bursting types. This heterogeneity of electrical responsivity has generally been attributed to variability in the types and densities of ionic channels. We show here, using compartmental models of reconstructed cortical neurons, that an entire spectrum of firing patterns can be reproduced in a set of neurons that share a common distribution of ion channels and differ only in their dendritic geometry. The essential behaviour of the model depends on partial electrical coupling of fast active conductances localized to the soma and axon and slow active currents located throughout the dendrites, and can be reproduced in a two-compartment model. The results suggest a causal relationship for the observed correlations between dendritic structure and firing properties and emphasize the importance of active dendritic conductances in neuronal function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus.

            The dentate granule cell layer of the rodent hippocampal formation has the distinctive property of ongoing neurogenesis that continues throughout adult life. In both human temporal lobe epilepsy and rodent models of limbic epilepsy, this same neuronal population undergoes extensive remodeling, including reorganization of mossy fibers, dispersion of the granule cell layer, and the appearance of granule cells in ectopic locations within the dentate gyrus. The mechanistic basis of these abnormalities, as well as their potential relationship to dentate granule cell neurogenesis, is unknown. We used a systemic chemoconvulsant model of temporal lobe epilepsy and bromodeoxyuridine (BrdU) labeling to investigate the effects of prolonged seizures on dentate granule cell neurogenesis in adult rats, and to examine the contribution of newly differentiated dentate granule cells to the network changes seen in this model. Pilocarpine-induced status epilepticus caused a dramatic and prolonged increase in cell proliferation in the dentate subgranular proliferative zone (SGZ), an area known to contain neuronal precursor cells. Colocalization of BrdU-immunolabeled cells with the neuron-specific markers turned on after division, 64 kDa, class III beta-tubulin, or microtubule-associated protein-2 showed that the vast majority of these mitotically active cells differentiated into neurons in the granule cell layer. Newly generated dentate granule cells also appeared in ectopic locations in the hilus and inner molecular layer of the dentate gyrus. Furthermore, developing granule cells projected axons aberrantly to both the CA3 pyramidal cell region and the dentate inner molecular layer. Induction of hippocampal seizure activity by perforant path stimulation resulted in an increase in SGZ mitotic activity similar to that seen with pilocarpine administration. These observations indicate that prolonged seizure discharges stimulate dentate granule cell neurogenesis, and that hippocampal network plasticity associated with epileptogenesis may arise from aberrant connections formed by newly born dentate granule cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NEURON: a tool for neuroscientists.

              NEURON is a simulation environment for models of individual neurons and networks of neurons that are closely linked to experimental data. NEURON provides tools for conveniently constructing, exercising, and managing models, so that special expertise in numerical methods or programming is not required for its productive use. This article describes two tools that address the problem of how to achieve computational efficiency and accuracy.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                May 2014
                8 May 2014
                : 10
                : 5
                : e1003601
                Affiliations
                [1 ]Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
                [2 ]Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, São Paulo, Brasil
                Université Paris Descartes, Centre National de la Recherche Scientifique, France
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JT NGC ACR. Performed the experiments: JT. Analyzed the data: JT NGC ACR. Contributed reagents/materials/analysis tools: JT NGC ACR. Wrote the paper: JT NGC ACR.

                Article
                PCOMPBIOL-D-13-01920
                10.1371/journal.pcbi.1003601
                4014389
                24811867
                0583da1e-93f1-4bac-836c-e3858f52b1d9
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 November 2013
                : 20 March 2014
                Page count
                Pages: 11
                Funding
                JT was the recipient of a Post-Doctoral Fellowship from Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP, Brazil, grant number (2012/17057-2). www.fapesp.br. NGC is recipient of grants from CNPq, FAPESP, FAPESP-Cinapce, CAPES-PROEX, Brazil. NGC and ACR are also recipients of CNPq-Research Fellowships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Computational Biology
                Computational Neuroscience
                Circuit Models
                Neuroscience
                Medicine and Health Sciences
                Neurology
                Neurobiology of Disease and Regeneration

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article