12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A review of processing of feed ingredients to enhance diet digestibility in finfish

      , ,
      Animal Feed Science and Technology
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: not found
          • Article: not found

          Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phytic acid interactions in food systems.

            M Cheryan (1979)
            Phytic acid is present in many plant systems, constituting about 1 to 5% by weight of many cereals and legumes. Concern about its presence in food arises from evidence that it decreases the bioavailability of many essential minerals by interacting with multivalent cations and/or proteins to form complexes that may be insoluble or otherwise unavailable under physiologic conditions. The precise structure of phytic acid and its salts is still a matter of controversy and lack of a good method of analysis is also a problem. It forms fairly stable chelates with almost all multivalent cations which are insoluble about pH 6 to 7, although pH, type, and concentration of cation have a tremendous influence on their solubility characteristics. In addition, at low pH and low cation concentration, phytate-protein complexes are formed due to direct electrostatic interaction, while at pH > 6 to 7, a ternary phytic acid-mineral-protein complex is formed which dissociates at high Na+ concentrations. These complexes appear to be responsible for the decreased bioavailability of the complexed minerals and are also more resistant to proteolytic digestion at low pH. Development of methods for producing low-phytate food products must take into account the nature and extent of the interactions between phytic acid and other food components. Simple mechanical treatment, such as milling, is useful for those seeds in which phytic acid tends to be localized in specific regions. Enzyme treatment, either directly with phytase or indirectly through the action of microorganisms, such as yeast during breadmaking, is quite effective, provided pH and other environmental conditions are favorable. It is also possible to produce low-phytate products by taking advantage of some specific interactions. For example, adjustment of pH and/or ionic strength so as to dissociate phytate-protein complexes and then using centrifugation or ultrafiltration (UF) has been shown to be useful. Phytic acid can also influence certain functional properties such as pH-solubility profiles of the proteins and the cookability of the seeds.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish

                Bookmark

                Author and article information

                Journal
                Animal Feed Science and Technology
                Animal Feed Science and Technology
                Elsevier BV
                03778401
                October 2007
                October 2007
                : 138
                : 2
                : 118-136
                Article
                10.1016/j.anifeedsci.2007.06.019
                0595bc88-b548-4043-a0cb-acae3b50af93
                © 2007

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article