3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Revisiting the MMTV Zoonotic Hypothesis to Account for Geographic Variation in Breast Cancer Incidence

      ,
      Viruses
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human breast cancer incidence varies by geographic location. More than 20 years ago, we proposed that zoonotic transmission of the mouse mammary tumor virus (MMTV) from the western European house mouse, Mus musculus domesticus, might account for the regional differences in breast cancer incidence. In the intervening years, several developments provide additional support for this hypothesis, including the limited impact of genetic factors for breast cancer susceptibility revealed by genome-wide association studies and the strong effect of antiretroviral therapy to reduce breast cancer incidence. At the same time, economic globalization has further expanded the distribution of M. m. domesticus to Asia, leading to a significant increase in breast cancer incidence in this region. Here, we revisit this evidence and provide an update to the MMTV zoonotic hypothesis for human breast cancer at a time when the world is recovering from the global COVID-19 zoonotic pandemic. We present evidence that mouse population outbreaks are correlated with spikes in breast cancer incidence in Australia and New Zealand and that globalization has increased the range of M. m. domesticus and MMTV. Given the success of global vaccination campaigns for HPV to eradicate cervical cancer, a similar strategy for MMTV may be warranted. Until breast cancer incidence is reduced by such an approach, zoonotic transmission of MMTV from mice to humans as an etiologic factor for breast cancer will remain controversial.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: found

          Association analysis identifies 65 new breast cancer risk loci

          Breast cancer risk is influenced by rare coding variants in susceptibility genes such as BRCA1 and many common, mainly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. We report results from a genome-wide association study (GWAS) of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry1. We identified 65 new loci associated with overall breast cancer at p<5x10-8. The majority of credible risk SNPs in the new loci fall in distal regulatory elements, and by integrating in-silico data to predict target genes in breast cells at each locus, we demonstrate a strong overlap between candidate target genes and somatic driver genes in breast tumours. We also find that heritability of breast cancer due to all SNPs in regulatory features was 2-5-fold enriched relative to the genome-wide average, with strong enrichment for particular transcription factor binding sites. These results provide further insight into genetic susceptibility to breast cancer and will improve the utility of genetic risk scores for individualized screening and prevention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort

            Abstract Objective To assess the prospective associations between consumption of ultra-processed food and risk of cancer. Design Population based cohort study. Setting and participants 104 980 participants aged at least 18 years (median age 42.8 years) from the French NutriNet-Santé cohort (2009-17). Dietary intakes were collected using repeated 24 hour dietary records, designed to register participants’ usual consumption for 3300 different food items. These were categorised according to their degree of processing by the NOVA classification. Main outcome measures Associations between ultra-processed food intake and risk of overall, breast, prostate, and colorectal cancer assessed by multivariable Cox proportional hazard models adjusted for known risk factors. Results Ultra-processed food intake was associated with higher overall cancer risk (n=2228 cases; hazard ratio for a 10% increment in the proportion of ultra-processed food in the diet 1.12 (95% confidence interval 1.06 to 1.18); P for trend<0.001) and breast cancer risk (n=739 cases; hazard ratio 1.11 (1.02 to 1.22); P for trend=0.02). These results remained statistically significant after adjustment for several markers of the nutritional quality of the diet (lipid, sodium, and carbohydrate intakes and/or a Western pattern derived by principal component analysis). Conclusions In this large prospective study, a 10% increase in the proportion of ultra-processed foods in the diet was associated with a significant increase of greater than 10% in risks of overall and breast cancer. Further studies are needed to better understand the relative effect of the various dimensions of processing (nutritional composition, food additives, contact materials, and neoformed contaminants) in these associations. Study registration Clinicaltrials.gov NCT03335644.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Retroviral restriction by APOBEC proteins.

              A powerful mechanism of vertebrate innate immunity has been discovered in the past year, in which APOBEC proteins inhibit retroviruses by deaminating cytosine residues in nascent retroviral cDNA. To thwart this cellular defence, HIV encodes Vif, a small protein that mediates APOBEC degradation. Therefore, the balance between APOBECs and Vif might be a crucial determinant of the outcome of retroviral infection. Vertebrates have up to 11 different APOBEC proteins, with primates having the most. APOBEC proteins include AID, a probable DNA mutator that is responsible for immunoglobulin-gene diversification, and APOBEC1, an RNA editor with antiretroviral activities. This APOBEC abundance might help to tip the balance in favour of cellular defences.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                VIRUBR
                Viruses
                Viruses
                MDPI AG
                1999-4915
                March 2022
                March 09 2022
                : 14
                : 3
                : 559
                Article
                10.3390/v14030559
                35336966
                05a25b1d-ba05-4b0b-9fab-fb779d3d3648
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article