76
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Transposable Elements versus the Fungal Genome: Impact on Whole-Genome Architecture and Transcriptional Profiles

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Transposable elements (TEs) are exceptional contributors to eukaryotic genome diversity. Their ubiquitous presence impacts the genomes of nearly all species and mediates genome evolution by causing mutations and chromosomal rearrangements and by modulating gene expression. We performed an exhaustive analysis of the TE content in 18 fungal genomes, including strains of the same species and species of the same genera. Our results depicted a scenario of exceptional variability, with species having 0.02 to 29.8% of their genome consisting of transposable elements. A detailed analysis performed on two strains of Pleurotus ostreatus uncovered a genome that is populated mainly by Class I elements, especially LTR-retrotransposons amplified in recent bursts from 0 to 2 million years (My) ago. The preferential accumulation of TEs in clusters led to the presence of genomic regions that lacked intra- and inter-specific conservation. In addition, we investigated the effect of TE insertions on the expression of their nearby upstream and downstream genes. Our results showed that an important number of genes under TE influence are significantly repressed, with stronger repression when genes are localized within transposon clusters. Our transcriptional analysis performed in four additional fungal models revealed that this TE-mediated silencing was present only in species with active cytosine methylation machinery. We hypothesize that this phenomenon is related to epigenetic defense mechanisms that are aimed to suppress TE expression and control their proliferation.

          Author Summary

          Transposable elements (TEs) are enigmatic genetic units that have played important roles in the evolution of eukaryotic genomes. Since their discovery in the 1950s, they have gained increasing attention and are known today as active genome modelers in multiple species. Although these elements have been widely studied in plants, much less is known about their occurrence and impact on the fungal kingdom. Using a diverse set of basidiomycete and ascomycete fungi, we quantified and characterized a huge diversity of DNA and RNA transposable elements, and we identified species that had 0.02 to 29.8% of their genomes occupied by transposable elements. In addition, using our basidiomycete model Pleurotus ostreatus, we demonstrated how TE insertions produced detrimental effects on the expression of upstream and downstream genes, which were downregulated compared with the control groups. This silencing mechanism was present in the basidiomycetes tested but exhibited a patchy distribution in ascomycetes, and might be related to specific genome defense mechanisms that control transposon proliferation. This finding reveals the broader impact of transposable elements in fungi. In addition to their importance as long-term evolutionary forces, they play major roles in the more dynamic transcriptome regulation of certain species.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons

          Background Transposable elements are abundant in eukaryotic genomes and it is believed that they have a significant impact on the evolution of gene and chromosome structure. While there are several completed eukaryotic genome projects, there are only few high quality genome wide annotations of transposable elements. Therefore, there is a considerable demand for computational identification of transposable elements. LTR retrotransposons, an important subclass of transposable elements, are well suited for computational identification, as they contain long terminal repeats (LTRs). Results We have developed a software tool LTRharvest for the de novo detection of full length LTR retrotransposons in large sequence sets. LTRharvest efficiently delivers high quality annotations based on known LTR transposon features like length, distance, and sequence motifs. A quality validation of LTRharvest against a gold standard annotation for Saccharomyces cerevisae and Drosophila melanogaster shows a sensitivity of up to 90% and 97% and specificity of 100% and 72%, respectively. This is comparable or slightly better than annotations for previous software tools. The main advantage of LTRharvest over previous tools is (a) its ability to efficiently handle large datasets from finished or unfinished genome projects, (b) its flexibility in incorporating known sequence features into the prediction, and (c) its availability as an open source software. Conclusion LTRharvest is an efficient software tool delivering high quality annotation of LTR retrotransposons. It can, for example, process the largest human chromosome in approx. 8 minutes on a Linux PC with 4 GB of memory. Its flexibility and small space and run-time requirements makes LTRharvest a very competitive candidate for future LTR retrotransposon annotation projects. Moreover, the structured design and implementation and the availability as open source provides an excellent base for incorporating novel concepts to further improve prediction of LTR retrotransposons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Horizontal gene transfer in eukaryotic evolution.

            Horizontal gene transfer (HGT; also known as lateral gene transfer) has had an important role in eukaryotic genome evolution, but its importance is often overshadowed by the greater prevalence and our more advanced understanding of gene transfer in prokaryotes. Recurrent endosymbioses and the generally poor sampling of most nuclear genes from diverse lineages have also complicated the search for transferred genes. Nevertheless, the number of well-supported cases of transfer from both prokaryotes and eukaryotes, many with significant functional implications, is now expanding rapidly. Major recent trends include the important role of HGT in adaptation to certain specialized niches and the highly variable impact of HGT in different lineages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi.

              Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                13 June 2016
                June 2016
                : 12
                : 6
                : e1006108
                Affiliations
                [1 ]Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Navarre, Spain
                [2 ]U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
                [3 ]Center for Algorithmic Biotechnology, St. Petersburg State University, St. Petersburg, Russia
                [4 ]Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States of America
                [5 ]Department of Plant Pathology and Microbiology, Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, United States of America
                University of Utah School of Medicine, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RC JES LR. Performed the experiments: RC LLV AB. Analyzed the data: RC JES LR. Contributed reagents/materials/analysis tools: KL AL JES JG GP JS. Wrote the paper: RC AGP IVG JES LR.

                Author information
                http://orcid.org/0000-0003-2153-1962
                http://orcid.org/0000-0002-7591-0020
                Article
                PGENETICS-D-15-02386
                10.1371/journal.pgen.1006108
                4905642
                27294409
                05ac5044-6906-46f9-bbaf-b24104efb9e3

                This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 28 September 2015
                : 13 May 2016
                Page count
                Figures: 9, Tables: 3, Pages: 27
                Funding
                Funded by: Beca FPI Ministerio de Economía y Competitividad, Spain
                Award Recipient :
                Funded by: Universidad Pública de Navarra, Spain
                Award Recipient :
                Funded by: Universidad Pública de Navarra, Spain
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100003329, Ministerio de Economía y Competitividad;
                Award ID: AGL2014-55971-R
                Award Recipient :
                This work was supported by Spanish National Research Plan (Projects AGL2011-30495 and AGL2014-55971-R) and FEDER funds; Public University of Navarre ( http://www.unavarra.es); U.S. Department of Energy Joint Genome Institute; and Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 ( http://science.energy.gov/bso/contract-management/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Genetics
                Fungal Genetics
                Fungal Genomics
                Biology and Life Sciences
                Mycology
                Fungal Genetics
                Fungal Genomics
                Biology and Life Sciences
                Genetics
                Genomics
                Fungal Genomics
                Biology and Life Sciences
                Genetics
                Genetic Elements
                Mobile Genetic Elements
                Transposable Elements
                Biology and Life Sciences
                Genetics
                Genomics
                Mobile Genetic Elements
                Transposable Elements
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Genomic Libraries
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Genomic Libraries
                Research and Analysis Methods
                Database and Informatics Methods
                Biological Databases
                Genomic Databases
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Genomic Databases
                Biology and Life Sciences
                Genetics
                Genomics
                Genome Analysis
                Genomic Databases
                Biology and Life Sciences
                Genetics
                Fungal Genetics
                Biology and Life Sciences
                Mycology
                Fungal Genetics
                Biology and Life Sciences
                Genetics
                Gene Expression
                Biology and Life Sciences
                Organisms
                Fungi
                Basidiomycetes
                Biology and Life Sciences
                Organisms
                Fungi
                Custom metadata
                Raw sequencing data has been deposited in GEO database under the accession number GSE81586.

                Genetics
                Genetics

                Comments

                Comment on this article