22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      De Novo Herpes Simplex Virus VP16 Expression Gates a Dynamic Programmatic Transition and Sets the Latent/Lytic Balance during Acute Infection in Trigeminal Ganglia

      research-article
      1 , * , 2 , *
      PLoS Pathogens
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The life long relationship between herpes simplex virus and its host hinges on the ability of the virus to aggressively replicate in epithelial cells at the site of infection and transport into the nervous system through axons innervating the infection site. Interaction between the virus and the sensory neuron represents a pivot point where largely unknown mechanisms lead to a latent or a lytic infection in the neuron. Regulation at this pivot point is critical for balancing two objectives, efficient widespread seeding of the nervous system and host survival. By combining genetic and in vivo in approaches, our studies reveal that the balance between latent and lytic programs is a process occurring early in the trigeminal ganglion. Unexpectedly, activation of the latent program precedes entry into the lytic program by 12 -14hrs. Importantly, at the individual neuronal level, the lytic program begins as a transition out of this acute stage latent program and this escape from the default latent program is regulated by de novo VP16 expression. Our findings support a model in which regulated de novo VP16 expression in the neuron mediates entry into the lytic cycle during the earliest stages of virus infection in vivo. These findings support the hypothesis that the loose association of VP16 with the viral tegument combined with sensory axon length and transport mechanisms serve to limit arrival of virion associated VP16 into neuronal nuclei favoring latency. Further, our findings point to specialized features of the VP16 promoter that control the de novo expression of VP16 in neurons and this regulation is a key component in setting the balance between lytic and latent infections in the nervous system.

          Author Summary

          Herpes simplex virus remains a significant human pathogen associated with extensive acute and chronic disease in humans worldwide. The virus invades the peripheral and central nervous systems where it replicates but also establishes life-long latent infections in neurons. Two distinct viral transcriptional programs support these distinct lifestyles, but how entry into either the lytic or latent programs is regulated in the neuron is not understood. This process is fundamentally important to a virus with the capacity to be extremely virulent, in balancing two objectives, efficient widespread seeding of the nervous system and host survival. In this report, we provide new insight into this regulation and data that support a novel model in which virus transported into the neuron from the body surface enters the latent program by default. In a subset of these, there is a transition into the lytic cycle, which requires VP16 transactivation and is gated by a region in the VP16 promoter. Thus, HSV takes advantage of the anatomy and axonal transport systems in sensory neurons so that VP16 is left behind and latency is favored, while features of the VP16 promoter insure adequate virus spread in the nervous system and maximized latent infections.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1.

          We have determined the DNA sequence of the long unique region (UL) in the genome of herpes simplex virus type 1 (HSV-1) strain 17. The UL sequence contained 107,943 residues and had a base composition of 66.9% G + C. Together with our previous work, this completes the sequence of HSV-1 DNA, giving a total genome length of 152,260 residues of base composition 68.3% G + C. Genes in the UL region were located by the use of published mapping analyses, transcript structures and sequence data, and by examination of DNA sequence characteristics. Fifty-six genes were identified, accounting for most of the sequence. Some 28 of these are at present of unknown function. The gene layout for UL was found to be very similar to that for the corresponding part of the genome of varicella-zoster virus, the only other completely sequenced alphaherpesvirus, and the amino acid sequences of equivalent proteins showed a range of similarities. In the whole genome of HSV-1 we now recognize 72 genes which encode 70 distinct proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inhibition of the histone demethylase LSD1 blocks α-herpesvirus lytic replication and reactivation from latency

            Reversible methylation of histone tails serve as either positive signals recognized by transcriptional assemblies or negative signals that result in repression 1–4. Invading viral pathogens that depend upon the host cell’s transcriptional apparatus are also subject to the regulatory impact of chromatin assembly and modifications5–8. Here we show that infection by the α-herpesviruses HSV and VZV results in the rapid accumulation of chromatin bearing repressive histone H3-lysine 9 methylation. To enable expression of viral immediate early (IE) genes, both viruses use the cellular transcriptional coactivator HCF-1 to recruit the demethylase LSD1 to the viral immediate early promoters. Depletion of LSD1 or inhibition of its activity with MAO inhibitors results in the accumulation of repressive chromatin and a block to viral gene expression. As HCF-1 is a component of the Set1 and MLL1 histone H3 lysine 4 methyl-transferase complexes 9,10, it thus coordinates modulation of repressive H3-lysine 9 methylation levels with addition of activating H3-lysine 4 trimethylation marks. Strikingly, MAO inhibitors also block the reactivation of HSV from latency in sensory neurons, indicating that the HCF-1 complex is a critical component of the reactivation mechanism. The results support pharmaceutical control of histone modifying enzymes as a strategy for controlling herpesvirus infections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of alphaherpesvirus infections by the ICP0 family of proteins.

              Immediate-early protein ICP0 of herpes simplex virus type 1 (HSV-1) is important for the regulation of lytic and latent viral infection. Like the related proteins expressed by other alphaherpesviruses, ICP0 has a zinc-stabilized RING finger domain that confers E3 ubiquitin ligase activity. This domain is essential for the core functions of ICP0 and its activity leads to the degradation of a number of cellular proteins, some of which are involved in cellular defences that restrict viral infection. The article reviews recent advances in ICP0-related research, with an emphasis on the mechanisms by which ICP0 and related proteins counteract antiviral restriction and the roles in this process of cellular nuclear substructures known as ND10 or PML nuclear bodies. We also summarize recent advances in the understanding of the biochemical aspects of ICP0 activity. These studies highlight the importance of the SUMO conjugation pathway in both intrinsic resistance to HSV-1 infection and in substrate targeting by ICP0. The topics discussed in this review are relevant not only to HSV-1 infection, but also to cellular intrinsic resistance against herpesviruses more generally and the mechanisms by which viruses can evade this restriction.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                8 September 2016
                September 2016
                : 12
                : 9
                : e1005877
                Affiliations
                [1 ]Department of Pediatrics, Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
                [2 ]Department of Molecular Genetics, Microbiology, and Biochemistry, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
                Princeton University, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                • Conceptualization: RLT NMS.

                • Data curation: RLT NMS.

                • Formal analysis: RLT NMS.

                • Funding acquisition: RLT NMS.

                • Investigation: RLT NMS.

                • Methodology: RLT NMS.

                • Project administration: RLT NMS.

                • Resources: RLT NMS.

                • Supervision: RLT NMS.

                • Validation: RLT NMS.

                • Visualization: RLT NMS.

                • Writing – original draft: RLT NMS.

                • Writing – review & editing: RLT NMS.

                Article
                PPATHOGENS-D-16-00867
                10.1371/journal.ppat.1005877
                5015900
                27607440
                05af494b-5dab-4de9-9cb9-7107eaa3a24a
                © 2016 Sawtell, Thompson

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 22 April 2016
                : 17 August 2016
                Page count
                Figures: 7, Tables: 1, Pages: 27
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: AI093614
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000060, National Institute of Allergy and Infectious Diseases;
                Award ID: AI116389
                Award Recipient :
                Research reported in this publication was supported by the National Institute of Allergy and Infectious Diseases of the national Institutes of Health under award numbers RO1AI093614 to NMS, Ph.D. and R21AI116389 to RLT, Ph.D. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Neurons
                Biology and Life Sciences
                Neuroscience
                Cellular Neuroscience
                Neurons
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Replication
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Ganglia
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Ganglia
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Gene Expression and Vector Techniques
                Protein Expression
                Research and Analysis Methods
                Molecular Biology Techniques
                Molecular Biology Assays and Analysis Techniques
                Gene Expression and Vector Techniques
                Protein Expression
                Biology and Life Sciences
                Genetics
                Genomics
                Animal Genomics
                Mammalian Genomics
                Biology and Life Sciences
                Anatomy
                Head
                Eyes
                Medicine and Health Sciences
                Anatomy
                Head
                Eyes
                Biology and Life Sciences
                Anatomy
                Ocular System
                Eyes
                Medicine and Health Sciences
                Anatomy
                Ocular System
                Eyes
                Medicine and Health Sciences
                Ophthalmology
                Eye Diseases
                Biology and Life Sciences
                Microbiology
                Virology
                Viral Persistence and Latency
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article