+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Locked Nucleic Acid Antisense Oligonucleotide (LNA) Silences PCSK9 and Enhances LDLR Expression In Vitro and In Vivo

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          The proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in the etiology of familial hypercholesterolemia (FH) and is also an attractive therapeutic target to reduce low density lipoprotein (LDL) cholesterol. PCSK9 accelerates the degradation of hepatic low density lipoprotein receptor (LDLR) and low levels of hepatic PCSK9 activity are associated with reduced levels of circulating LDL-cholesterol.

          Methodology/Principal Findings

          The present study presents the first evidence for the efficacy of a locked nucleic acid (LNA) antisense oligonucleotide (LNA ASO) that targets both human and mouse PCSK9. We employed human hepatocytes derived cell lines HepG2 and HuH7 and a pancreatic mouse β-TC3 cell line known to express high endogenous levels of PCSK9. LNA ASO efficiently reduced the mRNA and protein levels of PCSK9 with a concomitant increase in LDLR protein levels after transfection in these cells. In vivo efficacy of LNA ASO was further investigated in mice by tail vein intravenous administration of LNA ASO in saline solution. The level of PCSK9 mRNA was reduced by ∼60%, an effect lasting more than 16 days. Hepatic LDLR protein levels were significantly up-regulated by 2.5–3 folds for at least 8 days and ∼2 fold for 16 days. Finally, measurement of liver alanine aminotransferase (ALT) levels revealed that long term LNA ASO treatment (7 weeks) does not cause hepatotoxicity.


          LNA-mediated PCSK9 mRNA inhibition displayed potent reduction of PCSK9 in cell lines and mouse liver. Our data clearly revealed the efficacy and safety of LNA ASO in reducing PCSK9 levels, an approach that is now ready for testing in primates. The major significance and take home message of this work is the development of a novel and promising approach for human therapeutic intervention of the PCSK9 pathway and hence for reducing some of the cardiovascular risk factors associated with the metabolic syndrome.

          Related collections

          Most cited references 18

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Efficient gene silencing by delivery of locked nucleic acid antisense oligonucleotides, unassisted by transfection reagents

          For the past 15–20 years, the intracellular delivery and silencing activity of oligodeoxynucleotides have been essentially completely dependent on the use of a delivery technology (e.g. lipofection). We have developed a method (called ‘gymnosis’) that does not require the use of any transfection reagent or any additives to serum whatsoever, but rather takes advantage of the normal growth properties of cells in tissue culture in order to promote productive oligonucleotide uptake. This robust method permits the sequence-specific silencing of multiple targets in a large number of cell types in tissue culture, both at the protein and mRNA level, at concentrations in the low micromolar range. Optimum results were obtained with locked nucleic acid (LNA) phosphorothioate gap-mers. By appropriate manipulation of oligonucleotide dosing, this silencing can be continuously maintained with little or no toxicity for >240 days. High levels of oligonucleotide in the cell nucleus are not a requirement for gene silencing, contrary to long accepted dogma. In addition, gymnotic delivery can efficiently deliver oligonucleotides to suspension cells that are known to be very difficult to transfect. Finally, the pattern of gene silencing of in vitro gymnotically delivered oligonucleotides correlates particularly well with in vivo silencing. The establishment of this link is of particular significance to those in the academic research and drug discovery and development communities.
            • Record: found
            • Abstract: found
            • Article: not found

            Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9.

            PCSK9 encodes proprotein convertase subtilisin/kexin type 9a (PCSK9), a member of the proteinase K subfamily of subtilases. Missense mutations in PCSK9 cause an autosomal dominant form of hypercholesterolemia in humans, likely due to a gain-of-function mechanism because overexpression of either WT or mutant PCSK9 reduces hepatic LDL receptor protein (LDLR) in mice. Here, we show that livers of knockout mice lacking PCSK9 manifest increased LDLR protein but not mRNA. Increased LDLR protein led to increased clearance of circulating lipoproteins and decreased plasma cholesterol levels (46 mg/dl in Pcsk9(-/-) mice versus 96 mg/dl in WT mice). Statins, a class of drugs that inhibit cholesterol synthesis, increase expression of sterol regulatory element-binding protein-2 (SREBP-2), a transcription factor that activates both the Ldlr and Pcsk9 genes. Statin administration to Pcsk9(-/-) mice produced an exaggerated increase in LDLRs in liver and enhanced LDL clearance from plasma. These data demonstrate that PCSK9 regulates the amount of LDLR protein in liver and suggest that inhibitors of PCSK9 may act synergistically with statins to enhance LDLRs and reduce plasma cholesterol.
              • Record: found
              • Abstract: found
              • Article: not found

              PCSK9: a convertase that coordinates LDL catabolism.

              The identification and characterization of proprotein convertase subtilisin-like/kexin type 9 (PCSK9) have provided new insights into LDL metabolism and the causal role of LDL in coronary heart disease (CHD). PCSK9 is a secreted protease that mediates degradation of the LDL receptor by interacting with the extracellular domain and targeting the receptor for degradation. Individuals with loss-of-function mutations in PCSK9 have reduced plasma levels of LDL cholesterol and are protected from CHD; these observations have validated PCSK9 as a therapeutic target and suggested new approaches for the treatment and prevention of CHD.

                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                17 May 2010
                : 5
                : 5
                [1 ]Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
                [2 ]Santaris Pharma A/S, Hørsholm, Denmark
                Virginia Commonwealth University, United States of America
                Author notes

                Conceived and designed the experiments: NG NF JE NGS EMS. Performed the experiments: NG NF MCA ML HØ. Analyzed the data: NG NF ML CR JE NGS EMS. Contributed reagents/materials/analysis tools: NG CR HØ EMS. Wrote the paper: NG NF JE NGS EMS.

                ¶ These authors also contributed equally to this work.

                Gupta et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 9
                Research Article
                Cardiovascular Disorders
                Biochemistry/Chemical Biology of the Cell
                Biochemistry/Transcription and Translation
                Cardiovascular Disorders/Coronary Artery Disease
                Gastroenterology and Hepatology/Hepatology



                Comment on this article