35
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circadian Clock Genes Contribute to the Regulation of Hair Follicle Cycling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hair follicles undergo recurrent cycling of controlled growth (anagen), regression (catagen), and relative quiescence (telogen) with a defined periodicity. Taking a genomics approach to study gene expression during synchronized mouse hair follicle cycling, we discovered that, in addition to circadian fluctuation, CLOCK–regulated genes are also modulated in phase with the hair growth cycle. During telogen and early anagen, circadian clock genes are prominently expressed in the secondary hair germ, which contains precursor cells for the growing follicle. Analysis of Clock and Bmal1 mutant mice reveals a delay in anagen progression, and the secondary hair germ cells show decreased levels of phosphorylated Rb and lack mitotic cells, suggesting that circadian clock genes regulate anagen progression via their effect on the cell cycle. Consistent with a block at the G1 phase of the cell cycle, we show a significant upregulation of p21 in Bmal1 mutant skin. While circadian clock mechanisms have been implicated in a variety of diurnal biological processes, our findings indicate that circadian clock genes may be utilized to modulate the progression of non-diurnal cyclic processes.

          Author Summary

          The hair follicle renews itself by repeatedly cycling among growth, regression, and rest phases. One function of hair follicle cycling is to allow seasonal changes in hair growth. Understanding the regulation of hair follicle cycling is also of interest because abnormal regulation of hair cycle control genes is responsible for several types of human hair growth disorders and skin cancers. We report here that Clock and Bmal1 genes, which control circadian rhythms, are also important for the regulation of hair follicle cycling, a biological process of much longer duration than 24 hours. Detailed analysis of skin from mice mutated for central clock genes indicates a significant delay in the progression of the hair growth phase. We show that clock genes affect the expression of key cell cycle control genes and that keratinocytes in a critical compartment of the hair follicles in Bmal1 mutant mice are halted in the G1 phase of the cell cycle. These findings provide novel insight into circadian control mechanisms in modulating the progression of cyclic biological processes on different time scales.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          DAVID: Database for Annotation, Visualization, and Integrated Discovery.

          Functional annotation of differentially expressed genes is a necessary and critical step in the analysis of microarray data. The distributed nature of biological knowledge frequently requires researchers to navigate through numerous web-accessible databases gathering information one gene at a time. A more judicious approach is to provide query-based access to an integrated database that disseminates biologically rich information across large datasets and displays graphic summaries of functional information. Database for Annotation, Visualization, and Integrated Discovery (DAVID; http://www.david.niaid.nih.gov) addresses this need via four web-based analysis modules: 1) Annotation Tool - rapidly appends descriptive data from several public databases to lists of genes; 2) GoCharts - assigns genes to Gene Ontology functional categories based on user selected classifications and term specificity level; 3) KeggCharts - assigns genes to KEGG metabolic processes and enables users to view genes in the context of biochemical pathway maps; and 4) DomainCharts - groups genes according to PFAM conserved protein domains. Analysis results and graphical displays remain dynamically linked to primary data and external data repositories, thereby furnishing in-depth as well as broad-based data coverage. The functionality provided by DAVID accelerates the analysis of genome-scale datasets by facilitating the transition from data collection to biological meaning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator.

            Mammalian circadian rhythms are generated by a feedback loop in which BMAL1 and CLOCK, players of the positive limb, activate transcription of the cryptochrome and period genes, components of the negative limb. Bmal1 and Per transcription cycles display nearly opposite phases and are thus governed by different mechanisms. Here, we identify the orphan nuclear receptor REV-ERBalpha as the major regulator of cyclic Bmal1 transcription. Circadian Rev-erbalpha expression is controlled by components of the general feedback loop. Thus, REV-ERBalpha constitutes a molecular link through which components of the negative limb drive antiphasic expression of components of the positive limb. While REV-ERBalpha influences the period length and affects the phase-shifting properties of the clock, it is not required for circadian rhythm generation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock.

              Mice deficient in the circadian transcription factor BMAL1 (brain and muscle ARNT-like protein) have impaired circadian behavior and demonstrate loss of rhythmicity in the expression of target genes. Here we report that Bmal1(-/-) mice have reduced lifespans and display various symptoms of premature aging including sarcopenia, cataracts, less subcutaneous fat, organ shrinkage, and others. The early aging phenotype correlates with increased levels of reactive oxygen species in some tissues of the Bmal1(-/- )animals. These findings, together with data on CLOCK/BMAL1-dependent control of stress responses, may provide a mechanistic explanation for the early onset of age-related pathologies in the absence of BMAL1.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2009
                July 2009
                24 July 2009
                : 5
                : 7
                : e1000573
                Affiliations
                [1 ]Department of Biological Chemistry, University of California Irvine, Irvine, California, United States of America
                [2 ]Department of Medicine, University of California Irvine, Irvine, California, United States of America
                [3 ]Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
                [4 ]Howard Hughes Medical Institute, Northwestern University, Evanston, Illinois, United States of America
                [5 ]Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois, United States of America
                [6 ]Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
                [7 ]Department of Computer Science, University of California Irvine, Irvine, California, United States of America
                [8 ]Department of Dermatology, University of Luebeck, Luebeck, Germany
                [9 ]School of Translational Medicine, University of Manchester, Manchester, United Kingdom
                University of Pennsylvania School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: KKL MG RP JST BA. Performed the experiments: KKL VK MG. Analyzed the data: KKL MG DC ATI. Contributed reagents/materials/analysis tools: VK DC ATI PS RP JST. Wrote the paper: KKL DC BA.

                Article
                09-PLGE-RA-0319R3
                10.1371/journal.pgen.1000573
                2705795
                19629164
                05df2ad9-7410-4e10-afc8-5acc18c72743
                Lin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 26 February 2009
                : 23 June 2009
                Page count
                Pages: 14
                Categories
                Research Article
                Cell Biology/Gene Expression
                Computational Biology/Transcriptional Regulation
                Genetics and Genomics/Bioinformatics

                Genetics
                Genetics

                Comments

                Comment on this article