29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Maternal Brain: An Organ with Peripartal Plasticity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The time of pregnancy, birth, and lactation, is characterized by numerous specific alterations in several systems of the maternal body. Peripartum-associated changes in physiology and behavior, as well as their underlying molecular mechanisms, have been the focus of research since decades, but are still far from being entirely understood. Also, there is growing evidence that pregnancy and lactation are associated with a variety of alterations in neural plasticity, including adult neurogenesis, functional and structural synaptic plasticity, and dendritic remodeling in different brain regions. All of the mentioned changes are not only believed to be a prerequisite for the proper fetal and neonatal development, but moreover to be crucial for the physiological and mental health of the mother. The underlying mechanisms apparently need to be under tight control, since in cases of dysregulation, a certain percentage of women develop disorders like preeclampsia or postpartum mood and anxiety disorders during the course of pregnancy and lactation. This review describes common peripartum adaptations in physiology and behavior. Moreover, it concentrates on different forms of peripartum-associated plasticity including changes in neurogenesis and their possible underlying molecular mechanisms. Finally, consequences of malfunction in those systems are discussed.

          Related collections

          Most cited references229

          • Record: found
          • Abstract: found
          • Article: not found

          Adult hippocampal neurogenesis buffers stress responses and depressive behavior

          Summary Glucocorticoids are released in response to stressful experiences and serve many beneficial homeostatic functions. However, dysregulation of glucocorticoids is associated with cognitive impairments and depressive illness 1, 2 . In the hippocampus, a brain region densely populated with receptors for stress hormones, stress and glucocorticoids strongly inhibit adult neurogenesis 3 . Decreased neurogenesis has been implicated in the pathogenesis of anxiety and depression, but direct evidence for this role is lacking 4, 5 . Here we show that adult-born hippocampal neurons are required for normal expression of the endocrine and behavioral components of the stress response. Using transgenic and radiation methods to specifically inhibit adult neurogenesis, we find that glucocorticoid levels are slower to recover after moderate stress and are less suppressed by dexamethasone in neurogenesis-deficient mice compared with intact mice, consistent with a role for the hippocampus in regulation of the hypothalamic-pituitary-adrenal (HPA) axis 6, 7 . Relative to controls, neurogenesis-deficient mice showed increased food avoidance in a novel environment after acute stress, increased behavioral despair in the forced swim test, and decreased sucrose preference, a measure of anhedonia. These findings identify a small subset of neurons within the dentate gyrus that are critical for hippocampal negative control of the HPA axis and support a direct role for adult neurogenesis in depressive illness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of medial prefrontal cortex in memory and decision making.

            Some have claimed that the medial prefrontal cortex (mPFC) mediates decision making. Others suggest mPFC is selectively involved in the retrieval of remote long-term memory. Yet others suggests mPFC supports memory and consolidation on time scales ranging from seconds to days. How can all these roles be reconciled? We propose that the function of the mPFC is to learn associations between context, locations, events, and corresponding adaptive responses, particularly emotional responses. Thus, the ubiquitous involvement of mPFC in both memory and decision making may be due to the fact that almost all such tasks entail the ability to recall the best action or emotional response to specific events in a particular place and time. An interaction between multiple memory systems may explain the changing importance of mPFC to different types of memories over time. In particular, mPFC likely relies on the hippocampus to support rapid learning and memory consolidation. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Natural killer cells and pregnancy.

              The fetus is considered to be an allograft that, paradoxically, survives pregnancy despite the laws of classical transplantation immunology. There is no direct contact of the mother with the embryo, only with the extraembryonic placenta as it implants in the uterus. No convincing evidence of uterine maternal T-cell recognition of placental trophoblast cells has been found, but instead, there might be maternal allorecognition mediated by uterine natural killer cells that recognize unusual fetal trophoblast MHC ligands.
                Bookmark

                Author and article information

                Journal
                Neural Plast
                Neural Plast
                NP
                Neural Plasticity
                Hindawi Publishing Corporation
                2090-5904
                1687-5443
                2014
                4 May 2014
                : 2014
                : 574159
                Affiliations
                1Department of Obstetrics and Gynecology, Salzburger Landeskrankenhaus (SALK), Paracelsus Medical University, Müllner Hauptstrasse 48/Strubergasse 21, 5020 Salzburg, Austria
                2Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
                Author notes

                Academic Editor: Aniko Korosi

                Article
                10.1155/2014/574159
                4026981
                24883213
                05df6261-868c-4778-9525-a42ea7226c4c
                Copyright © 2014 Katharina Maria Hillerer et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 January 2014
                : 24 March 2014
                Funding
                Funded by: State Government of Salzburg
                Award ID: HEALTH-F2-2011-278850
                Funded by: Medical Private University Salzburg
                Award ID: P-12/01/001-FIS
                Categories
                Review Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article