38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evasion of Antiviral Innate Immunity by Theiler's Virus L* Protein through Direct Inhibition of RNase L

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS) and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus.

          Author Summary

          Theiler's virus is a murine picornavirus (same family as poliovirus) which has a striking ability to establish persistent infections of the central nervous system. To do so, the virus has to counteract the immune response of the host and particularly the potent response mediated by interferon. We observed that a protein encoded by Theiler's virus, the L* protein, inhibited the RNase L pathway, one of the best-characterized pathways mediating the antiviral IFN response. In contrast to previously identified viral antagonists of this pathway, L* was found to act directly on RNase L, the effector enzyme of the pathway. L* activity was found to be species-specific as it inhibited murine but not human RNase L. We confirmed the species-specificity and the direct interaction between L* and RNase L in vitro, using purified proteins. Acting at the effector step in the pathway allows L* to block RNase L activity efficiently. This suggests that RNase L is particularly important to control Theiler's virus replication in vivo. Another virus, mouse hepatitis virus (MHV), was recently shown to interfere with RNase L activation. Theiler's virus and MHV share a marked tropism for macrophages which may suggest that the RNase L pathway is particularly important in this cell type.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.

          A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described. The method provides a pure preparation of undegraded RNA in high yield and can be completed within 4 h. It is particularly useful for processing large numbers of samples and for isolation of RNA from minute quantities of cells or tissue samples.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences.

            Gene-transfer vectors based on lentiviruses are distinguished by their ability to transduce non-dividing cells. The HIV-1 proteins Matrix, Vpr and Integrase have been implicated in the nuclear import of the viral genome in non-dividing cells. Here we show that a sequence within pol is also required in cis. It contains structural elements previously associated with the progress of reverse transcription in target cells. We restored these elements in cis within late-generation lentiviral vectors. The new vector transduced to a much higher efficiency several types of human primary cells, when both growing and growth-arrested, including haematopoietic stem cells assayed by long-term repopulation of NOD/SCID mice. On in vivo administration into SCID mice, the vector induced higher plasma levels of human clotting factor IX (F.IX) than non-modified vector. Our results indicate that nuclear translocation of the genome is a rate-limiting step in lentiviral infection of both dividing and non-dividing cells, and that it depends on protein and nucleic acid sequence determinants. Full rescue of this step in lentivirus-based vectors improves performance for gene-therapy applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antagonism of the Interferon-Induced OAS-RNase L Pathway by Murine Coronavirus ns2 Protein Is Required for Virus Replication and Liver Pathology

              Summary Many viruses induce hepatitis in humans, highlighting the need to understand the underlying mechanisms of virus-induced liver pathology. The murine coronavirus, mouse hepatitis virus (MHV), causes acute hepatitis in its natural host and provides a useful model for understanding virus interaction with liver cells. The MHV accessory protein, ns2, antagonizes the type I interferon response and promotes hepatitis. We show that ns2 has 2′,5′-phosphodiesterase activity, which blocks the interferon inducible 2′,5′-oligoadenylate synthetase (OAS)-RNase L pathway to facilitate hepatitis development. Ns2 cleaves 2′,5′-oligoadenylate, the product of OAS, to prevent activation of the cellular endoribonuclease RNase L and consequently block viral RNA degradation. An ns2 mutant virus was unable to replicate in the liver or induce hepatitis in wild-type mice, but was highly pathogenic in RNase L deficient mice. Thus, RNase L is a critical cellular factor for protection against viral infection of the liver and the resulting hepatitis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                June 2013
                June 2013
                27 June 2013
                : 9
                : 6
                : e1003474
                Affiliations
                [1 ]Université Catholique de Louvain, de Duve Institute, Brussels, Belgium
                [2 ]Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio United States of America
                McMaster University, Canada
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: FS BKJ RHS TM. Performed the experiments: FS BKJ TM. Analyzed the data: FS BKJ RHS TM. Wrote the paper: FS BKJ RHS TM.

                Article
                PPATHOGENS-D-13-00577
                10.1371/journal.ppat.1003474
                3694852
                23825954
                05f47a01-42e3-42b5-8e7d-369cf64e5447
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 February 2013
                : 17 May 2013
                Page count
                Pages: 13
                Funding
                FS was the recipient of an FSR fellowship (University of Louvain) and was further supported by the DIANE convention of the Belgian Walloon Region. Work was supported by FSR (University of Louvain), ARC (Communauté Française de Belgique), and FRSM (Fonds National de la Recherche Médicale convention 3.4576.08 and crédit aux chercheurs). RHS was supported by NIH/NCI grant CA044059 and the Mal and Lea Bank Chair Fund. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Immunity
                Innate Immunity
                Microbiology
                Immunity
                Innate Immunity
                Virology
                Viral Classification
                RNA viruses
                Medicine
                Infectious Diseases
                Viral Diseases

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article