18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coronary Pressure Measurement Based Decision Making for Percutaneous Coronary Intervention

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The fractional flow reserve (FFR) is a simple, reliable, and reproducible physiologic index of lesion severity. In patients with intermediate stenosis, FFR≥0.75 can be used to safely defer percutaneous coronary intervention (PCI), and patients with FFR≥0.75 have a very low cardiac event rate. Coronary pressure measurement can determine which lesion should be treated with PCI in patients with tandem lesions, and PCI on the basis of FFR has been demonstrated to result in an acceptably low repeat PCI rate. FFR can identify patients with equivocal left main coronary artery disease who benefit from coronary bypass surgery. Coronary pressure measurement distinguishes patients with an abrupt pressure drop pattern from those with a gradual pressure drop pattern, and the former group of patients benefit from PCI. Coronary pressure measurement is clinically useful in evaluating sufficient recruitable coronary collateral blood flow for prevention of ischemia, which affects future cardiac events. FFR is useful for the prediction of restenosis after PCI. As an end-point of PCI, FFR ≥0.95 and ≥0.90 would be appropriate for coronary stenting and coronary angioplasty, respectively. In summary, if you encounter a coronary stenosis in doubt you should measure pressure rather than dilate it.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: not found

          Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses.

          The clinical significance of coronary-artery stenoses of moderate severity can be difficult to determine. Myocardial fractional flow reserve (FFR) is a new index of the functional severity of coronary stenoses that is calculated from pressure measurements made during coronary arteriography. We compared this index with the results of noninvasive tests commonly used to detect myocardial ischemia, to determine the usefulness of the index. In 45 consecutive patients with moderate coronary stenosis and chest pain of uncertain origin, we performed bicycle exercise testing, thallium scintigraphy, stress echocardiography with dobutamine, and quantitative coronary arteriography and compared the results with measurements of FFR. In all 21 patients with an FFR of less than 0.75, reversible myocardial ischemia was demonstrated unequivocally on at least one noninvasive test. After coronary angioplasty or bypass surgery was performed, all the positive test results reverted to normal. In contrast, 21 of the 24 patients with an FFR of 0.75 or higher tested negative for reversible myocardial ischemia on all the noninvasive tests. No revascularization procedures were performed in these patients, and none were required during 14 months of follow-up. The sensitivity of FFR in the identification of reversible ischemia was 88 percent, the specificity 100 percent, the positive predictive value 100 percent, the negative predictive value 88 percent, and the accuracy 93 percent. In patients with coronary stenosis of moderate severity, FFR appears to be a useful index of the functional severity of the stenoses and the need for coronary revascularization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: a randomized trial.

            PTCA of a coronary stenosis without documented ischemia at noninvasive stress testing is often performed, but its benefit is unproven. Coronary pressure-derived fractional flow reserve (FFR) is an invasive index of stenosis severity that is a reliable substitute for noninvasive stress testing. A value of 0.75 identifies stenoses with hemodynamic significance. In 325 patients for whom PTCA was planned and who did not have documented ischemia, FFR of the stenosis was measured. If FFR was >0.75, patients were randomly assigned to deferral (deferral group; n=91) or performance (performance group; n=90) of PTCA. If FFR was <0.75, PTCA was performed as planned (reference group; n=144). Clinical follow-up was obtained at 1, 3, 6, 12, and 24 months. Event-free survival was similar between the deferral and performance groups (92% versus 89% at 12 months and 89% versus 83% at 24 months) but was significantly lower in the reference group (80% at 12 months and 78% at 24 months). In addition, the percentage of patients free from angina was similar between the deferral and performance groups (49% versus 50% at 12 months and 70% versus 51% at 24 months) but was significantly higher in the reference group (67% at 12 and 80% at 24 months). In patients with a coronary stenosis without evidence of ischemia, coronary pressure-derived FFR identifies those who will benefit from PTCA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements.

              The prognostic relevance of the collateral circulation is still controversial. The goal of this study was to assess the impact on survival of quantitatively obtained, recruitable coronary collateral flow in patients with stable coronary artery disease during 10 years of follow-up. Eight-hundred forty-five individuals (age, 62+/-11 years), 106 patients without coronary artery disease and 739 patients with chronic stable coronary artery disease, underwent a total of 1053 quantitative, coronary pressure-derived collateral measurements between March 1996 and April 2006. All patients were prospectively included in a collateral flow index (CFI) database containing information on recruitable collateral flow parameters obtained during a 1-minute coronary balloon occlusion. CFI was calculated as follows: CFI = (P(occl) - CVP)/(P(ao) - CVP) where P(occl) is mean coronary occlusive pressure, P(ao) is mean aortic pressure, and CVP is central venous pressure. Patients were divided into groups with poorly developed (CFI or = 0.25). Follow-up information on the occurrence of all-cause mortality and major adverse cardiac events after study inclusion was collected. Cumulative 10-year survival rates in relation to all-cause deaths and cardiac deaths were 71% and 88%, respectively, in patients with low CFI and 89% and 97% in the group with high CFI (P=0.0395, P=0.0109). Through the use of Cox proportional hazards analysis, the following variables independently predicted elevated cardiac mortality: age, low CFI (as a continuous variable), and current smoking. A well-functioning coronary collateral circulation saves lives in patients with chronic stable coronary artery disease. Depending on the exact amount of collateral flow recruitable during a brief coronary occlusion, long-term cardiac mortality is reduced to one fourth compared with the situation without collateral supply.
                Bookmark

                Author and article information

                Journal
                Curr Cardiol Rev
                CCR
                Current Cardiology Reviews
                Bentham Science Publishers Ltd.
                1573-403X
                1875-6557
                November 2009
                : 5
                : 4
                : 323-333
                Affiliations
                [1 ]Department of Cardiology, Okayama Central Hospital, Japan
                [2 ]Department of Medical Technology, Okayama University Graduate School of Health Sciences, Japan
                Author notes
                [* ]Address for correspondence to this author at the Department of Cardiology, Okayama Central Hospital, 6-3 Ishimakitamachi, Okayama, Japan; Tel: +81-86-252-3221; Fax +81-86-252-1700; E-mail: iwasaki_k@ 123456kohjin.ne.jp
                Article
                CCR-5-323
                10.2174/157340309789317832
                2842964
                21037849
                06155a86-701a-4890-974c-c88251903c9f
                © 2009 Bentham Science Publishers Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 February 2008
                : 12 February 2009
                : 19 February 2009
                Categories
                Article

                Cardiovascular Medicine
                left main coronary artery,collateral blood flow.,coronary pressure,fractional flow reserve,intermediate stenosis,tandem lesions

                Comments

                Comment on this article