Statin therapy has been linked to an increased risk of type 2 diabetes in high-risk populations; however, the pathophysiology of this association remains to be clarified. We investigated glucagon suppression and its relationship with insulin resistance in prediabetic subjects undergoing atorvastatin therapy; in addition, we studied molecular insulin signaling in pancreatic α-cells exposed to atorvastatin in vitro.
Fifty subjects with prediabetes were divided into two groups based on atorvastatin therapy. All subjects underwent an oral glucose tolerance test. Early (0–30 min), late (30–120 min) and overall (0–120 min) glucagon suppression were evaluated. Insulin sensitivity was estimated by the insulin sensitivity index (ISI 0–120). Insulin signaling pathway and insulin-mediated glucagon suppression were investigated in pancreatic αTC1-6 cells chronically exposed (24 or 48 h) to atorvastatin (100 ng/mL).
Individuals on statin therapy ( n = 26) showed a significantly reduced early (0–30 min) ( P = 0.003) and overall (0–120 min) ( P = 0.01) glucagon suppression compared with controls ( n = 24). In multivariate regression analysis, early glucagon suppression (0–30 min) exhibited a significant correlation with statin therapy. Regression analysis showed a significant association between ISI 0-120 and early 0-30 ( r = 0.33, P < 0.05) and overall 0- 120 ( r = 0.38, P < 0.05) glucagon suppression. Moreover, in αTC1-6 cells atorvastatin treatment affected insulin-mediated glucagon suppression, insulin receptor phosphorylation and IRS-1-AKT pathway signaling.