Blog
About

13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-adiabatic Evolution of Primordial Perturbations and non-Gaussinity in Hybrid Approach of Loop Quantum Cosmology

      Preprint

      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While loop quantum cosmology (LQC) predicts a robust quantum bounce of the background evolution of a Friedmann-Robertson-Walker (FRW) spacetime prior to the standard slow-roll inflation, whereby the big bang singularity is resolved, there are several different quantization procedures to cosmological perturbations, for instance, {\em the deformed algebra, dressed metric, and hybrid quantizations}. This paper devotes to study the quantum bounce effects of primordial perturbations in the hybrid approach. The main discrepancy of this approach is the effective positive mass at the quantum bounce for the evolution of the background that is dominated by the kinetic energy of the inflaton field at the bounce, while this mass is always nonpositive in the dressed metric approach. It is this positivity of the effective mass that violates the adiabatic evolution of primordial perturbations at the initial moments of the quantum bounce. With the assumption that the evolution of the background is dominated by the kinetic energy of the inflaton at the bounce, we find that the effective potentials for both scalar and tensor perturbations can be well approximately described by a P\"{o}schl-Teller (PT) potential, which allows us to find analytical solutions of perturbations, and from these analytical expressions we are able to study the non-adiabatic evolution of primordial perturbations in details. In particular, we derive their quantum bounce effects and investigate their observational constraints. In addition, the impacts of quantum bounce effects on the non-Gaussinity and their implication on the explanations of observed power asymmetry in CMB have also been explored.

          Related collections

          Most cited references 8

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Loop Quantum Cosmology: A Status Report

          The goal of this article is to provide an overview of the current state of the art in loop quantum cosmology for three sets of audiences: young researchers interested in entering this area; the quantum gravity community in general; and, cosmologists who wish to apply loop quantum cosmology to probe modifications in the standard paradigm of the early universe. An effort has been made to streamline the material so that, as described at the end of section I, each of these communities can read only the sections they are most interested in, without a loss of continuity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The pre-inflationary dynamics of loop quantum cosmology: Confronting quantum gravity with observations

            Using techniques from loop quantum gravity, the standard theory of cosmological perturbations was recently generalized to encompass the Planck era. We now apply this framework to explore pre-inflationary dynamics. The framework enables us to isolate and resolve the true trans-Planckian difficulties, with interesting lessons both for theory and observations. Specifically, for a large class of initial conditions at the bounce, we are led to a self consistent extension of the inflationary paradigm over the 11 orders of magnitude in density and curvature, from the big bounce to the onset of slow roll. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects ---such as a modification of the consistency relation between the ratio of the tensor to scalar power spectrum and the tensor spectral index, as well as a new source for non-Gaussianities--- which could extend the reach of cosmological observations to the deep Planck regime of the early universe.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Probability of Inflation in Loop Quantum Cosmology

              Inflationary models of the early universe provide a natural mechanism for the formation of large scale structure. This success brings to forefront the question of naturalness: Does a sufficiently long slow roll inflation occur generically or does it require a careful fine tuning of initial parameters? In recent years there has been considerable controversy on this issue. In particular, for a quadratic potential, Kofman, Linde and Mukhanov have argued that the probability of inflation with at least 65 e-foldings is close to one, while Gibbons and Turok have argued that this probability is suppressed by a factor of ~ \(\10^{-85}\). We first clarify that such dramatically different predictions can arise because the required measure on the space of solutions is intrinsically ambiguous in general relativity. We then show that this ambiguity can be naturally resolved in loop quantum cosmology (LQC) because the big bang is replaced by a big bounce and the bounce surface can be used to introduce the structure necessary to specify a satisfactory measure. The second goal of the paper is to present a detailed analysis of the inflationary dynamics of LQC using analytical and numerical methods. By combining this information with the measure on the space of solutions, we address a sharper question than those investigated in the literature: What is the probability of a sufficiently long slow roll inflation WHICH IS COMPATIBLE WITH THE SEVEN YEAR WMAP DATA? We show that the probability is very close to 1. The material is so organized that cosmologists who may be more interested in the inflationary dynamics in LQC than in the subtleties associated with measures can skip that material without loss of continuity.
                Bookmark

                Author and article information

                Journal
                10 September 2018
                Article
                1809.03172

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                Custom metadata
                14 pages, 7 figures, 1 table
                gr-qc astro-ph.CO hep-th

                Comments

                Comment on this article