10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Drug Insight: the role of leptin in human physiology and pathophysiology--emerging clinical applications.

      Nature clinical practice. Endocrinology & metabolism

      Animals, Energy Metabolism, physiology, Humans, Immunity, drug effects, Leptin, deficiency, pharmacology, Models, Biological, Neurosecretory Systems, physiopathology, Obesity

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leptin is an adipocyte-secreted hormone with a key role in energy homeostasis. Studies in animal models, in humans with congenital complete leptin deficiency, and observational and interventional studies in humans with relative leptin deficiency (lower than normal leptin levels) have all indicated that leptin regulates multiple physiological functions, primarily in states of energy deficiency. This information led to proof-of-concept clinical trials involving leptin administration to individuals with relative or complete leptin deficiency. These conditions include congenital complete leptin deficiency, due to mutations in the leptin gene, and states of relative leptin deficiency including lipoatrophy and some forms of hypothalamic amenorrhea. Leptin, in replacement doses, normalizes neuroendocrine, metabolic and immune function in patients with these conditions, but further clinical studies are required to determine its long-term efficacy and safety. Management of leptin-deficient states with replacement doses of leptin holds promise as a therapeutic option. In addition, elucidation of the mechanisms underlying leptin resistance, which characterizes hyperleptinemic states such as human obesity and diabetes, might provide novel therapeutic targets for these prevalent clinical problems.

          Related collections

          Most cited references 53

          • Record: found
          • Abstract: found
          • Article: not found

          Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression.

          Nutritional deprivation suppresses immune function. The cloning of the obese gene and identification of its protein product leptin has provided fundamental insight into the hypothalamic regulation of body weight. Circulating levels of this adipocyte-derived hormone are proportional to fat mass but maybe lowered rapidly by fasting or increased by inflammatory mediators. The impaired T-cell immunity of mice now known to be defective in leptin (ob/ob) or its receptor (db/db), has never been explained. Impaired cell-mediated immunity and reduced levels of leptin are both features of low body weight in humans. Indeed, malnutrition predisposes to death from infectious diseases. We report here that leptin has a specific effect on T-lymphocyte responses, differentially regulating the proliferation of naive and memory T cells. Leptin increased Th1 and suppressed Th2 cytokine production. Administration of leptin to mice reversed the immunosuppressive effects of acute starvation. Our findings suggest a new role for leptin in linking nutritional status to cognate cellular immune function, and provide a molecular mechanism to account for the immune dysfunction observed in starvation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction.

            The adipocyte-specific hormone leptin, the product of the obese (ob) gene, regulates adipose-tissue mass through hypothalamic effects on satiety and energy expenditure. Leptin acts through the leptin receptor, a single-transmembrane-domain receptor of the cytokine-receptor family. In rodents, homozygous mutations in genes encoding leptin or the leptin receptor cause early-onset morbid obesity, hyperphagia and reduced energy expenditure. These rodents also show hypercortisolaemia, alterations in glucose homeostasis, dyslipidaemia, and infertility due to hypogonadotropic hypogonadisms. In humans, leptin deficiency due to a mutation in the leptin gene is associated with early-onset obesity. Here we describe a homozygous mutation in the human leptin receptor gene that results in a truncated leptin receptor lacking both the transmembrane and the intracellular domains. In addition to their early-onset morbid obesity, patients homozygous for this mutation have no pubertal development and their secretion of growth hormone and thyrotropin is reduced. These results indicate that leptin is an important physiological regulator of several endocrine functions in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Abnormal splicing of the leptin receptor in diabetic mice.

              Mutations in the mouse diabetes (db) gene result in obesity and diabetes in a syndrome resembling morbid human obesity. Previous data suggest that the db gene encodes the receptor for the obese (ob) gene product, leptin. A leptin receptor was recently cloned from choroid plexus and shown to map to the same 6-cM interval on mouse chromosome 4 as db. This receptor maps to the same 300-kilobase interval as db, and has at least six alternatively spliced forms. One of these splice variants is expressed at a high level in the hypothalamus, and is abnormally spliced in C57BL/Ks db/db mice. The mutant protein is missing the cytoplasmic region, and is likely to be defective in signal transduction. This suggests that the weight-reducing effects of leptin may be mediated by signal transduction through a leptin receptor in the hypothalamus.
                Bookmark

                Author and article information

                Journal
                16932309
                10.1038/ncpendmet0196

                Comments

                Comment on this article