6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sex Differences in Autophagy Contribute to Female Vulnerability in Alzheimer's Disease

      review-article
      *
      Frontiers in Neuroscience
      Frontiers Media S.A.
      Alzheimer, autophagy, sex, sex hormons, tau, amyloid, insulin signaling

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's disease (AD) is the most common form of dementia, with over 5. 4 million cases in the US alone (Alzheimer's Association, 2016). Clinically, AD is defined by the presence of plaques composed of Aβ and neurofibrillary pathology composed of the microtubule associated protein tau. Another key feature is the dysregulation of autophagy at key steps in the pathway. In AD, disrupted autophagy contributes to disease progression through the failure to clear pathological protein aggregates, insulin resistance, and its role in the synthesis of Aβ. Like many psychiatric and neurodegenerative diseases, the risk of developing AD, and disease course are dependent on the sex of the patient. One potential mechanism through which these differences occur, is the effects of sex hormones on autophagy. In women, the loss of hormones with menopause presents both a risk factor for developing AD, and an obvious example of where sex differences in AD can stem from. However, because AD pathology can begin decades before menopause, this does not provide the full answer. We propose that sex-based differences in autophagy regulation during the lifespan contribute to the increased risk of AD, and greater severity of pathology seen in women.

          Related collections

          Most cited references170

          • Record: found
          • Abstract: found
          • Article: not found

          Sex modifies the APOE-related risk of developing Alzheimer disease.

          The APOE4 allele is the strongest genetic risk factor for sporadic Alzheimer disease (AD). Case-control studies suggest the APOE4 link to AD is stronger in women. We examined the APOE4-by-sex interaction in conversion risk (from healthy aging to mild cognitive impairment (MCI)/AD or from MCI to AD) and cerebrospinal fluid (CSF) biomarker levels. Cox proportional hazards analysis was used to compute hazard ratios (HRs) for an APOE-by-sex interaction on conversion in controls (n = 5,496) and MCI patients (n = 2,588). The interaction was also tested in CSF biomarker levels of 980 subjects from the Alzheimer's Disease Neuroimaging Initiative. Among controls, male and female carriers were more likely to convert to MCI/AD, but the effect was stronger in women (HR = 1.81 for women; HR = 1.27 for men; interaction: p = 0.011). The interaction remained significant in a predefined subanalysis restricted to APOE3/3 and APOE3/4 genotypes. Among MCI patients, both male and female APOE4 carriers were more likely to convert to AD (HR = 2.16 for women; HR = 1.64 for men); the interaction was not significant (p = 0.14). In the subanalysis restricted to APOE3/3 and APOE3/4 genotypes, the interaction was significant (p = 0.02; HR = 2.17 for women; HR = 1.51 for men). The APOE4-by-sex interaction on biomarker levels was significant for MCI patients for total tau and the tau-to-Aβ ratio (p = 0.009 and p = 0.02, respectively; more AD-like in women). APOE4 confers greater AD risk in women. Biomarker results suggest that increased APOE-related risk in women may be associated with tau pathology. These findings have important clinical implications and suggest novel research approaches into AD pathogenesis. © 2014 American Neurological Association.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy.

            Autophagy is primarily considered a non-selective degradation process induced by starvation. Nutrient-independent basal autophagy, in contrast, imposes intracellular QC by selective disposal of aberrant protein aggregates and damaged organelles, a process critical for suppressing neurodegenerative diseases. The molecular mechanism that distinguishes these two fundamental autophagic responses, however, remains mysterious. Here, we identify the ubiquitin-binding deacetylase, histone deacetylase-6 (HDAC6), as a central component of basal autophagy that targets protein aggregates and damaged mitochondria. Surprisingly, HDAC6 is not required for autophagy activation; rather, it controls the fusion of autophagosomes to lysosomes. HDAC6 promotes autophagy by recruiting a cortactin-dependent, actin-remodelling machinery, which in turn assembles an F-actin network that stimulates autophagosome-lysosome fusion and substrate degradation. Indeed, HDAC6 deficiency leads to autophagosome maturation failure, protein aggregate build-up, and neurodegeneration. Remarkably, HDAC6 and F-actin assembly are completely dispensable for starvation-induced autophagy, uncovering the fundamental difference of these autophagic modes. Our study identifies HDAC6 and the actin cytoskeleton as critical components that define QC autophagy and uncovers a novel regulation of autophagy at the level of autophagosome-lysosome fusion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons

              Introduction Macroautophagy (hereafter referred to as autophagy) is a lysosomal degradation process that removes and degrades damaged proteins and organelles. Autophagy is initiated when a portion of the cytoplasm is enclosed within a double-membrane organelle, termed an autophagosome (Xie and Klionsky, 2007). Autophagosomes then fuse with degradative compartments in the endosomal–lysosomal pathway. Autophagy occurs at a basal, constitutive level and functions as a quality control system that can be up-regulated in response to cellular stresses, such as starvation (Mizushima et al., 2008). Autophagy is an essential pathway in postmitotic cells, such as neurons, cells that are particularly susceptible to the accumulation of defective proteins and organelles. Neuron-specific disruption of autophagy results in neurodegeneration (Hara et al., 2006; Komatsu et al., 2006). Defects in autophagy have been observed in multiple models of neurodegenerative disease, including Alzheimer’s, Huntington’s, and amyotrophic lateral sclerosis (ALS; Rubinsztein et al., 2005; Ventruti and Cuervo, 2007; Mariño et al., 2011). However, the biogenesis, maturation, and dynamics of autophagosomes in neurons are only poorly understood. Most studies to date have focused on model systems that lack the extended and highly polarized processes that characterize neurons (Jahreiss et al., 2008; Kimura et al., 2008). Here, we track the dynamics of autophagosomes in real time along the axons of primary neurons. We find that autophagosome initiation is a constitutive and spatially restricted process in the distal axon. Autophagosomes engulf both cytosolic and organelle cargo and are driven by dynein and kinesin motors. Once formed, autophagosomes undergo a spatially defined maturation as they move processively along the axon toward the cell body. We find that autophagosome dynamics remain robust in a mouse model of neurodegenerative disease, but autophagosome flux is not increased even as protein aggregates accumulate along the axon. Thus, in primary neurons, the dynamics of the autophagy pathway are robust and spatially specific but may not be efficiently up-regulated in response to increased protein aggregation. Results and discussion Distal initiation followed by robust retrograde transport of autophagosomes in primary neurons To monitor the dynamics of autophagosomes in primary neurons, we isolated dorsal root ganglion (DRG) neurons from transgenic mice expressing the autophagosome marker GFP-LC3 (Mizushima et al., 2004). After 2 d in vitro, DRG neurons extend neurites ∼1,000 µm in length that are tau positive (Perlson et al., 2009). Microtubules in the neurite are uniformly polarized with plus ends outward as indicated by the directionality of the plus-tip protein EB3 (Fig. S1 A). The linear separation provided by the extended length of the processes allows sufficient spatial resolution to examine the steps of autophagosome formation and maturation along the axon using live-cell imaging. Cytosolic GFP-LC3 is found throughout the neuron but becomes lipidated and incorporated into autophagosomes upon their formation (Xie and Klionsky, 2007). Imaging the distal tips of neurons revealed the initiation of autophagosome formation. Within bulbous regions near the distal end of the axon, ∼1 mm from the cell soma, we observed the incorporation of GFP-LC3 into ringlike structures ∼800 nm in diameter (Fig. 1, A and B). Often, multiple rings were observed to accumulate within a single bulbous region (Fig. 1 B). We identified these ringlike structures as autophagosomes based on their strong LC3-positive signals and the similarity in morphology to the LC3-positive structures seen in vivo in transgenic GFP-LC3 mice (Mizushima et al., 2004). Figure 1. Autophagosomes initiate distally and undergo retrograde movement toward the cell soma in primary neurons. (A) GFP-LC3 localization at the distal end of DRG neurons. Arrowheads denote the accumulation of GFP-LC3–positive puncta. (B) Autophagosomes initiate in the distal tip of the neurite, where pronounced ringlike structures accumulate (arrowheads). (C) Time series of autophagosome biogenesis; arrowheads denote the appearance and growth of GFP-LC3–positive puncta into a ring (Video 1). (D and E) FRAP analysis of the distal neurite. Open arrowheads denote recovering puncta and growth into a ring, cyan and dark blue arrowheads denote two different examples of black holes of bleached preexisting rings, three different pink-shaded arrowheads denote the appearance of three different GFP-LC3–positive puncta that grow into rings. (F) Kymograph of autophagosome motility in the distal neurite showing bidirectional movement within a constrained region (arrowheads). Occasional autophagosomes escape from the tip and move processively toward the cell soma (retrograde track is pseudocolored green; Video 2). (G) Percentage of retrograde, anterograde, or bidirectional/stationary (Bi/Stat) vesicles (means ± SEM; n = 91 neurites). (H and I) Times series and corresponding kymographs showing processive movement of GFP-LC3–positive puncta along the axon (Video 3). Arrowheads denote an autophagosome traveling along the axon toward the cell soma. Retrograde motility is toward the right in all figures. Horizontal bars: (B–E) 1 µm; (A, F, H, and I) 10 µm. Vertical bars: (F) 2 min; (I) 1 min. Real-time analysis of distal neurites revealed direct evidence for autophagosome biogenesis. GFP-LC3–positive puncta appeared in distal bulbs and grew progressively into ring structures (Fig. 1, C–E; and Video 1). This growth was further resolved using FRAP. Within ∼20 s of photobleaching, puncta began to recover their fluorescence and continued to grow into a ring, indicating continued recruitment of unbleached GFP-LC3 into the expanding organelle (Fig. 1 D). This process was rapid, taking 4–6 min for recovering puncta to develop into a ring. In contrast, preexisting rings did not recover their fluorescence after photobleaching, appearing as black holes within the GFP-LC3–labeled cytoplasm (Fig. 1 E). The lack of recovery suggests that GFP-LC3 incorporated into the autophagosome ring is relatively stable and not rapidly exchanged with the cytosolic pool. Autophagosome biogenesis appears to be spatially restricted to the distal neurite, as we performed FRAP along the axon and did not observe either formation or growth of autophagosomes; also, preexisting autophagosomes along the axon showed no recovery (Fig. S1 B). Thus, in primary neurons, autophagosome precursors are generated distally. We have not observed biogenesis along the axon but cannot rule out initiation in the cell body caused by high levels of autofluorescence that limit our resolution. This spatial regulation of autophagosome biogenesis in primary neurons is distinct from observations in smaller, less polarized cells in which autophagosomes form throughout the cytosol (Jahreiss et al., 2008). The origin of the membrane that forms the distal LC3-positive rings remains to be determined. Possible sources include endocytosed plasma membrane, ER, mitochondria, or Golgi membranes (Hollenbeck, 1993; Hayashi-Nishino et al., 2009; Hailey et al., 2010; Ravikumar et al., 2010; van der Vaart and Reggiori, 2010; Yen et al., 2010). GFP-LC3–positive rings in the distal process either remained stationary or displayed saltatory bidirectional motility in a constrained region within ∼150–200 µm of the neurite tip (Fig. 1 F). Occasionally, autophagosomes could be seen exiting this bidirectional pool to initiate travel toward the cell body (Fig. 1 F and Video 2). Along the axon shaft, autophagosomes exhibited a different type of movement. Within the axon (50–500 µm from the cell body), autophagosomes displayed robust and primarily unidirectional motility (Fig. 1, G–I; and Video 3), with 82 ± 2% (±SEM) moving a net distance of ≥10 µm in the retrograde direction. Anterograde movement was rarely observed ( 0.067 µm/s in the opposite direction as compared with the net displacement of the vesicle. The number of reversals within 100 µm was determined based on the net distance a vesicle traveled during the 3 min. Kymographs were generated using MetaMorph from neurites having at least one GFP-LC3–positive puncta that traveled a net distance of ≥10 µm. From each kymograph, the percentage of autophagosomes moving in the net retrograde direction (≥10 µm) versus net anterograde direction (≥10 µm) was determined. Nonprocessive vesicles that did not move a net distance of 10 µm exhibited bidirectional and stationary motility. From these kymographs, the total number of vesicles was determined and normalized by kymograph length (micrometers). Flux (number of vesicles moving within 100 µm/min) was determined by the sum of retrograde and anterograde vesicles (excluding bidirectional/stationary vesicles) and normalized by kymograph and video length. For mCherry-EGFP-LC3 analysis, the number of LC3 puncta positive for both GFP and mCherry fluorescence was counted based on kymographs. The proximal region of the neurite was defined as being within ∼200 µm of the cell body, and the distal region was within ∼100 µm of the end of the neurite. Biochemistry Fractions enriched for autophagosomes were prepared from brains of GFP-LC3 transgenic mice using protocols adapted from Morvan et al. (2009) and Strømhaug et al. (1998). Two brains were homogenized in 10 ml of 250 mM sucrose in 10 mM Hepes-KOH, pH 7.4 (with 1 mM EDTA for three-step gradient protocol) using a 30-ml homogenizer with a round-bottom Teflon pestle. Volumes of the gradient steps were scaled proportionately for a rotor (SW41; Beckman Coulter). The final gradient of the three-step fractionation protocol (Strømhaug et al., 1998) was spun in a rotor (TLS-55; Beckman Coulter). Equal total protein of low speed supernatant and the autophagosome-enriched fraction was separated by SDS-PAGE and subjected to immunoblot analysis. Immunofluorescence For immunofluorescence analysis, DRG neurons were plated on coverslips and cultured for 2 d. Cells were washed once in PBS (150 mM NaCl in 50 mM NaPO4, pH 7.4) and fixed in 3% PFA in PBS for 15 min at room temperature. Cells were washed twice in PBS and blocked and permeabilized in 2% (wt/vol) BSA and 0.1% (wt/vol) saponin in PBS for 1 h. All subsequent steps were performed in blocking/permeabilization buffer. Samples were incubated in primary antibody for 1 h, washed 3 × 5 min, incubated in secondary antibody for 1 h, washed 3 × 5 min, and mounted with ProLong gold. Online supplemental material Fig. S1 shows the anterograde movement of EB3 in DRG axons, FRAP of GFP-LC3 along the axon, and distributions of mean vesicle velocities and percentage of pausing for GFP-LC3 puncta along the axon. Fig. S2 shows that autophagosomes along the axon are positive for DIC2C-mCherry and mCherry-Kif3A but not the Golgi marker GPP130-mCherry. Fig. S2 also shows that LysoTracker red–positive compartments are positive for the late endosomal marker Rab7 but are largely negative for the early endosomal marker Rab5. In Fig. S3, we present data showing that despite the accumulation of SOD1G93A aggregates along the axon, autophagosome motility, direction, velocity, density, and flux are unaffected in a mouse model of fALS. Video 1 shows the appearance and growth of GFP-LC3–positive puncta in the neurite tip that grow into ringlike structures characteristic of autophagosomes. Video 2 shows an autophagosome escaping from the bidirectional pool at the neurite tip and moving processively toward the cell soma. Video 3 shows the robust retrograde motility of autophagosomes along the axon, and Videos 4 and 5 show that dynein co-migrates with these autophagosomes transfected with DIC1B-mCherry (Video 4) or DIC2C-mCherry (Video 5). Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.201106120/DC1.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                22 June 2018
                2018
                : 12
                : 372
                Affiliations
                Neuroscience and Physiology, School of Medicine, New York University , New York City, NY, United States
                Author notes

                Edited by: Wai Haung Yu, Columbia University, United States

                Reviewed by: Barry Boland, University College Cork, Ireland; Tal Nuriel, Columbia University Medical Center, United States

                *Correspondence: Erin E. Congdon erin.congdon@ 123456nyumc.org

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Article
                10.3389/fnins.2018.00372
                6023994
                29988365
                06670b20-2705-472d-a9bb-7c56d4b5243b
                Copyright © 2018 Congdon.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 January 2018
                : 14 May 2018
                Page count
                Figures: 0, Tables: 1, Equations: 0, References: 209, Pages: 16, Words: 15754
                Funding
                Funded by: Alzheimer's Association 10.13039/100000957
                Award ID: 2016-NIRG-397228
                Categories
                Neuroscience
                Review

                Neurosciences
                alzheimer,autophagy,sex,sex hormons,tau,amyloid,insulin signaling
                Neurosciences
                alzheimer, autophagy, sex, sex hormons, tau, amyloid, insulin signaling

                Comments

                Comment on this article