12
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Sex and Gender in Neurodegenerative Diseases

      Submit here before September 30, 2024

      About Neurodegenerative Diseases: 3.0 Impact Factor I 4.3 CiteScore I 0.695 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Involvement of Cyclic GMP and Protein Kinase G in the Regulation of Apoptosis and Survival in Neural Cells

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Our current understanding of nitric oxide (NO), cyclic GMP (cGMP) and protein kinase G (PKG) signaling pathways in the nervous systems has its origins in the early studies conducted on vascular tissues during the late 1970s and early to mid-1980s. The pioneering research into the NO/cGMP/PKG pathway in blood vessels conducted by the laboratories of Drs. Ferid Murad, Louis Ignarro and Robert Furchgott ultimately led to the awarding of the 1998 Nobel Prize in Physiology or Medicine to these three scientists. On the basis of further pioneering studies by Drs. John Garthwaite, Solomon Snyder, Steven Vincent and many other neuroscientists during the late 1980s and throughout the 1990s, it became recognized that NO serves as a neurotransmitter/neuromodulator in the central and peripheral nervous systems and that certain neural cells possess a cGMP signaling pathway similar to that in vascular smooth muscle cells. Although NO (at high concentrations) is toxic and thought to participate in neuronal cell death during stroke and neurodegenerative diseases (e.g. amyotrophic lateral sclerosis, Alzheimer’s disease, HIV dementia and Parkinson’s disease), recent evidence suggests that NO at low physiological concentrations can act as an antiapoptotic/prosurvival factor in certain neural cells (e.g. PC12 cells, motor neurons and neurons of dorsal root ganglia, hippocampus and sympathetic nerves). The antiapoptotic effects of NO are mediated, in part, by cGMP and a downstream target protein, PKG. Other cGMP-elevating factors (e.g. atrial and brain natriuretic peptides) and direct PKG activator (e.g. 8-bromo-cGMP) also have antiapoptotic effects which have been quantified by the new capillary electrophoresis with laser-induced fluorescence detector technology. Inhibition of soluble guanylyl cyclase and lowering of basal cGMP levels cause apoptosis in unstressed neural cells (NG108-15 and N1E-115 cells). The cGMP/PKG pathway appears to play an essential role in preventing activation of a proapoptotic pathway, thus promoting neural cell survival.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide as a signaling molecule in the vascular system: an overview.

          In retrospect, basic research in the fields of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) during the past two decades appears to have followed a logical course, beginning with the findings that NO and cGMP are vascular smooth muscle relaxants, that nitroglycerin relaxes smooth muscle by metabolism to NO, progressing to the discovery that mammalian cells synthesize NO, and finally the revelation that NO is a neurotransmitter mediating vasodilation in specialized vascular beds. A great deal of basic and clinical research on the physiologic and pathophysiologic roles of NO in cardiovascular function has been conducted since the discovery that endothelium-derived relaxing factor (EDRF) is NO. The new knowledge on NO should enable investigators in this field to develop novel and more effective therapeutic strategies for the prevention, diagnosis, and treatment of numerous cardiovascular disorders. The goal of this review was to highlight the early research that led to our current understanding of the pathophysiologic role of NO in cardiovascular medicine. Furthermore, we discussed the possible mechanism of some drugs interfering with NO signaling cascade.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Cell Survival Promoted by the Ras-MAPK Signaling Pathway by Transcription-Dependent and -Independent Mechanisms

            A Bonni (1999)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of guanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation.

              Several lines of evidence suggest that cyclic GMP might be involved in long-term potentiation (LTP) in the hippocampus. Arachidonic acid, nitric oxide and carbon monoxide, three molecules that have been proposed to act as retrograde messengers in LTP, all activate soluble guanylyl cyclase. We report here that an inhibitor of guanylyl cyclase blocks the induction of LTP in the CA1 region of hippocampal slices. Conversely, cGMP analogues produce long-lasting enhancement of the excitatory postsynaptic potential if they are applied at the same time as weak tetanic stimulation of the presynaptic fibres. The enhancement is spatially restricted, is not blocked by valeric acid (APV), nifedipine, or picrotoxin, and partially occludes LTP. This synaptic enhancement may be mediated by the cGMP-dependent protein kinase (PKG). Inhibitors of PKG block the induction of LTP, and activators of PKG produce activity-dependent long-lasting enhancement. These results suggest that guanylyl cyclase and PKG contribute to LTP, possibly as activity-dependent presynaptic effectors of retrograde messengers.
                Bookmark

                Author and article information

                Journal
                NSG
                Neurosignals
                10.1159/issn.1424-862X
                Neurosignals
                S. Karger AG
                1424-862X
                1424-8638
                2002
                August 2002
                18 October 2002
                : 11
                : 4
                : 175-190
                Affiliations
                Department of Physiology, Faculty of Medicine, Epithelial Cell Biology Research Center, and Center for Gerontology and Geriatrics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
                Article
                65431 Neurosignals 2002;11:175–190
                10.1159/000065431
                12393944
                066a0dc2-cf5a-40f8-a94c-e2ec5aff226e
                © 2002 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 15 January 2002
                : 05 March 2002
                Page count
                Figures: 5, References: 92, Pages: 16
                Categories
                Review

                Geriatric medicine,Neurology,Cardiovascular Medicine,Neurosciences,Clinical Psychology & Psychiatry,Public health
                Alzheimer’s disease,Aging,Nitric oxide,Natriuretic peptides,Neurotrophic factors,Cyclic nucleotide-gated cation channels,Phosphodiesterases,DNA fragmentation,Neuroprotection,Neurodegenerative diseases

                Comments

                Comment on this article