10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Impact of Iron Overload and Ferroptosis on Reproductive Disorders in Humans: Implications for Preeclampsia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Iron is an essential element for the survival of most organisms, including humans. Demand for iron increases significantly during pregnancy to support growth and development of the fetus. Paradoxically, epidemiologic studies have shown that excessive iron intake and/or high iron status can be detrimental to pregnancy and is associated with reproductive disorders ranging from endometriosis to preeclampsia. Reproductive complications resulting from iron deficiency have been reviewed elsewhere. Here, we focus on reproductive disorders associated with iron overload and the contribution of ferroptosis—programmed cell death mediated by iron-dependent lipid peroxidation within cell membranes—using preeclampsia as a model system. We propose that the clinical expressions of many reproductive disorders and pregnancy complications may be due to an underlying ferroptopathy (elemental iron-associated disease), characterized by a dysregulation in iron homeostasis leading to excessive ferroptosis.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition.

          Ferroptosis is a form of regulated necrotic cell death controlled by glutathione peroxidase 4 (GPX4). At present, mechanisms that could predict sensitivity and/or resistance and that may be exploited to modulate ferroptosis are needed. We applied two independent approaches-a genome-wide CRISPR-based genetic screen and microarray analysis of ferroptosis-resistant cell lines-to uncover acyl-CoA synthetase long-chain family member 4 (ACSL4) as an essential component for ferroptosis execution. Specifically, Gpx4-Acsl4 double-knockout cells showed marked resistance to ferroptosis. Mechanistically, ACSL4 enriched cellular membranes with long polyunsaturated ω6 fatty acids. Moreover, ACSL4 was preferentially expressed in a panel of basal-like breast cancer cell lines and predicted their sensitivity to ferroptosis. Pharmacological targeting of ACSL4 with thiazolidinediones, a class of antidiabetic compound, ameliorated tissue demise in a mouse model of ferroptosis, suggesting that ACSL4 inhibition is a viable therapeutic approach to preventing ferroptosis-related diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ferroptosis: process and function.

            Ferroptosis is a recently recognized form of regulated cell death. It is characterized morphologically by the presence of smaller than normal mitochondria with condensed mitochondrial membrane densities, reduction or vanishing of mitochondria crista, and outer mitochondrial membrane rupture. It can be induced by experimental compounds (e.g., erastin, Ras-selective lethal small molecule 3, and buthionine sulfoximine) or clinical drugs (e.g., sulfasalazine, sorafenib, and artesunate) in cancer cells and certain normal cells (e.g., kidney tubule cells, neurons, fibroblasts, and T cells). Activation of mitochondrial voltage-dependent anion channels and mitogen-activated protein kinases, upregulation of endoplasmic reticulum stress, and inhibition of cystine/glutamate antiporter is involved in the induction of ferroptosis. This process is characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS) derived from iron metabolism and can be pharmacologically inhibited by iron chelators (e.g., deferoxamine and desferrioxamine mesylate) and lipid peroxidation inhibitors (e.g., ferrostatin, liproxstatin, and zileuton). Glutathione peroxidase 4, heat shock protein beta-1, and nuclear factor erythroid 2-related factor 2 function as negative regulators of ferroptosis by limiting ROS production and reducing cellular iron uptake, respectively. In contrast, NADPH oxidase and p53 (especially acetylation-defective mutant p53) act as positive regulators of ferroptosis by promotion of ROS production and inhibition of expression of SLC7A11 (a specific light-chain subunit of the cystine/glutamate antiporter), respectively. Misregulated ferroptosis has been implicated in multiple physiological and pathological processes, including cancer cell death, neurotoxicity, neurodegenerative diseases, acute renal failure, drug-induced hepatotoxicity, hepatic and heart ischemia/reperfusion injury, and T-cell immunity. In this review, we summarize the regulation mechanisms and signaling pathways of ferroptosis and discuss the role of ferroptosis in disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis.

              Enigmatic lipid peroxidation products have been claimed as the proximate executioners of ferroptosis-a specialized death program triggered by insufficiency of glutathione peroxidase 4 (GPX4). Using quantitative redox lipidomics, reverse genetics, bioinformatics and systems biology, we discovered that ferroptosis involves a highly organized oxygenation center, wherein oxidation in endoplasmic-reticulum-associated compartments occurs on only one class of phospholipids (phosphatidylethanolamines (PEs)) and is specific toward two fatty acyls-arachidonoyl (AA) and adrenoyl (AdA). Suppression of AA or AdA esterification into PE by genetic or pharmacological inhibition of acyl-CoA synthase 4 (ACSL4) acts as a specific antiferroptotic rescue pathway. Lipoxygenase (LOX) generates doubly and triply-oxygenated (15-hydroperoxy)-diacylated PE species, which act as death signals, and tocopherols and tocotrienols (vitamin E) suppress LOX and protect against ferroptosis, suggesting a homeostatic physiological role for vitamin E. This oxidative PE death pathway may also represent a target for drug discovery.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                04 July 2019
                July 2019
                : 20
                : 13
                : 3283
                Affiliations
                [1 ]Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA 02111, USA
                [2 ]Mother Infant Research Institute, Tufts Medical Center, Boston, MA 02111, USA
                [3 ]Washington University, St. Louis, MO 63130, USA
                Author notes
                [* ]Correspondence: sng1@ 123456tuftsmedicalcenter.org (S.-W.N.); enorwitz@ 123456tuftsmedicalcenter.org (E.R.N.); Tel.: +1-617-636-5890 (S.-W.N.); +1-617-636-2382 (E.R.N.)
                Article
                ijms-20-03283
                10.3390/ijms20133283
                6651445
                31277367
                06744c09-148c-424f-9b00-d31e1a9c8ace
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 08 June 2019
                : 03 July 2019
                Categories
                Review

                Molecular biology
                ferroptosis,hypoxia/reperfusion injury,maternal-fetal interface,preeclampsia
                Molecular biology
                ferroptosis, hypoxia/reperfusion injury, maternal-fetal interface, preeclampsia

                Comments

                Comment on this article