8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Interleukin-4 Cooperates with Interleukin-10 to Inhibit Vascular Permeability Factor Release by Peripheral Blood Mononuclear Cells from Patients with Minimal-Change Nephrotic Syndrome

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased production of a vascular permeability factor (VPF) from peripheral blood mononuclear cells (PBMC) in patients with minimal-change nephrotic syndrome (MCNS) has been reported. Interleukin-4 (IL-4) and interleukin-10 (IL-10), both produced by T-helper type-2 cells, are cytokines with the capacity to downregulate proinflammatory responses. To gain insight into the immunoregulatory properties of these cytokines, we analyzed the effects of recombinant human IL-4 and IL-10 on VPF release in MCNS patients. In the present study we show that the regulatory cytokines IL-4 and IL-10 are potent inhibitors of the VPF activity of concanavalin A-activated MCNS PBMC. Each cytokine was found to suppress VPF release in a dose-dependent manner. Moreover, when used at suboptimal concentrations, a combination of the two cytokines resulted in enhanced suppression of VPF release. Neutralization of endogenously produced IL-4 and IL-10 by both anti-IL-4 and anti-IL-10 antibodies resulted in an increased release of VPF. These data demonstrate that IL-4 acts in concert with IL-10 to inhibit VPF release and suggest that they are effective biologic regulators of the VPF responses in vitro.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: not found

          Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma- production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells

          Natural killer cell stimulatory factor or interleukin 12 (NKSF/IL-12) is a heterodimeric cytokine produced by monocytes/macrophages, B cells, and possibly other accessory cell types primarily in response to bacteria or bacterial products. NKSF/IL-12 mediates pleiomorphic biological activity on T and NK cells and, alone or in synergy with other inducers, is a powerful stimulator of interferon gamma (IFN- gamma) production. IL-10 is a potent inhibitor of monocyte-macrophage activation, that inhibits production of tumor necrosis factor alpha (TNF-alpha), IL-1 and also IFN-gamma from lymphocytes acting at the level of accessory cells. Because TNF-alpha and IL-1 are not efficient inducers of IFN-gamma, the mechanism by which IL-10 inhibits IFN-gamma production is not clear. In this paper, we show that IL-10 is a potent inhibitor of NKSF/IL-12 production from human peripheral blood mononuclear cells activated with Staphylococcus aureus or lipopolysaccharide (LPS). Both the production of the free NKSF/IL-12 p40 chain and the biologically active p70 heterodimer are blocked by IL- 10. NKSF/IL-12 p40 chain mRNA accumulation is strongly induced by S. aureus or LPS and downregulated by IL-10, whereas the p35 mRNA is constitutively expressed and only minimally regulated by S. aureus, LPS, or IL-10. Although IL-10 is able to block the production of NKSF/IL-12, a powerful inducer of IFN-gamma both in vitro and in vivo, the mechanism of inhibition of IFN-gamma by IL-10 cannot be explained only on the basis of inhibition of NKSF/IL-12 because IL-10 can partially inhibit IFN-gamma production induced by NKSF/IL-12, and also, the IFN-gamma production in response to various stimuli in the presence of neutralizing antibodies to NKSF/IL-12. Our findings that antibodies against NKSF/IL-12, TNF-alpha, or IL-1 beta can significantly inhibit IFN-gamma production in response to various stimuli and that NKSF/IL-12 and IL-1 beta can overcome the IL-10-mediated inhibition of IFN-gamma, suggest that IL-10 inhibition of IFN-gamma production is primarily due to its blocking production from accessory cells of the IFN-gamma- inducer NKSF/IL-12, as well as the costimulating molecule IL-1 beta.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis.

            Heavy proteinuria and progressive renal injury recur after transplantation in up to 40 percent of patients with renal failure caused by idiopathic focal segmental glomerulosclerosis. A circulating factor may be responsible for this recurrence. To determine whether patients with focal segmental glomerulosclerosis have a circulating factor capable of causing glomerular injury, we tested serum samples from 100 patients with the disorder in an in vitro assay of glomerular permeability to albumin. Of the 56 patients who had undergone renal transplantation, 33 had recurrences. Sixty-four patients, many of whom had undergone transplantation, were being treated with dialysis. Thirty-one patients with other renal diseases and nine normal subjects were also studied. The 33 patients with recurrent focal segmental glomerulosclerosis after transplantation had a higher mean (+/-SE) value for permeability to albumin (0.47+/-0.06) than the normal subjects (0.06+/-0.07) or the patients who did not have recurrences (0.14+/-0.06). After plasmapheresis in six patients with recurrences, the permeability was reduced (from 0.79+/-0.06 to 0.10+/-0.05, P = 0.008), and proteinuria was significantly decreased. Patients with corticosteroid-sensitive nephrotic syndrome or with membranous nephropathy after transplantation had low levels of serum activity. The circulating factor bound to protein A and hydrophobic-interaction columns and had an apparent molecular mass of about 50 kd. A circulating factor found in some patients with focal segmental glomerulosclerosis is associated with recurrent disease after renal transplantation and may be responsible for initiating the renal injury.
              Bookmark

              Author and article information

              Journal
              AJN
              Am J Nephrol
              10.1159/issn.0250-8095
              American Journal of Nephrology
              S. Karger AG
              0250-8095
              1421-9670
              1999
              February 1999
              22 March 1999
              : 19
              : 1
              : 21-27
              Affiliations
              Second Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
              Article
              13420 Am J Nephrol 1999;19:21–27
              10.1159/000013420
              10085445
              0677d457-cc09-43e6-a8dd-fa285191ecd0
              © 1999 S. Karger AG, Basel

              Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

              History
              Page count
              Figures: 4, Tables: 1, References: 14, Pages: 7
              Categories
              Clinical Study

              Cardiovascular Medicine,Nephrology
              Minimal-change nephrotic syndrome,Vascular permeability factor,IgA nephropathy,Interleukin-4,Interleukin-10

              Comments

              Comment on this article