33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A low-marker density implementation of genomic selection in aquaculture using within-family genomic breeding values

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Genomic selection can increase genetic gain within aquaculture breeding programs, but the high costs related to high-density genotyping of a large number of individuals would make the breeding program expensive. In this study, a low-cost method using low-density genotyping of pre-selected candidates and their sibs was evaluated by stochastic simulation.

          Methods

          A breeding scheme with selection for two traits, one measured on candidates and one on sibs was simulated. Genomic breeding values were estimated within families and combined with conventional family breeding values for candidates that were pre-selected based on conventional BLUP breeding values. This strategy was compared with a conventional breeding scheme and a full genomic selection program for which genomic breeding values were estimated across the whole population. The effects of marker density, level of pre-selection and number of sibs tested and genotyped for the sib-trait were studied.

          Results

          Within-family genomic breeding values increased genetic gain by 15% and reduced rate of inbreeding by 15%. Genetic gain was robust to a reduction in marker density, with only moderate reductions, even for very low densities. Pre-selection of candidates down to approximately 10% of the candidates before genotyping also had minor effects on genetic gain, but depended somewhat on marker density. The number of test-individuals, i.e. individuals tested for the sib-trait, affected genetic gain, but the fraction of the test-individuals genotyped only affected the relative contribution of each trait to genetic gain.

          Conclusions

          A combination of genomic within-family breeding values, based on low-density genotyping, and conventional BLUP family breeding values was shown to be a possible low marker density implementation of genomic selection for species with large full-sib families for which the costs of genotyping must be kept low without compromising the effect of genomic selection on genetic gain.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of response to marker-assisted and genomic selection using selection index theory.

          J Dekkers (2007)
          Selection index methods can be used for deterministic assessment of the potential benefit of including marker information in genetic improvement programmes using marker-assisted selection (MAS). By specifying estimates of breeding values derived from marker information (M-EBV) as a correlated trait with heritability equal to 1, it was demonstrated that marker information can be incorporated in standard software for selection index predictions of response and rates of inbreeding, which requires specifying phenotypic traits and their genetic parameters. Path coefficient methods were used to derive genetic and phenotypic correlations between M-EBV and the phenotypic data. Methods were extended to multi-trait selection and to the case when M-EBV are based on high-density marker genotype data, as in genomic selection. Methods were applied to several example scenarios, which confirmed previous results that MAS substantially increases response to selection but also demonstrated that MAS can result in substantial reductions in the rates of inbreeding. Although further validation by stochastic simulation is required, the developed methodology provides an easy means of deterministically evaluating the potential benefits of MAS and to optimize selection strategies with availability of marker data.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Genomic selection using low-density marker panels.

            Genomic selection (GS) using high-density single-nucleotide polymorphisms (SNPs) is promising to improve response to selection in populations that are under artificial selection. High-density SNP genotyping of all selection candidates each generation, however, may not be cost effective. Smaller panels with SNPs that show strong associations with phenotype can be used, but this may require separate SNPs for each trait and each population. As an alternative, we propose to use a panel of evenly spaced low-density SNPs across the genome to estimate genome-assisted breeding values of selection candidates in pedigreed populations. The principle of this approach is to utilize cosegregation information from low-density SNPs to track effects of high-density SNP alleles within families. Simulations were used to analyze the loss of accuracy of estimated breeding values from using evenly spaced and selected SNP panels compared to using all high-density SNPs in a Bayesian analysis. Forward stepwise selection and a Bayesian approach were used to select SNPs. Loss of accuracy was nearly independent of the number of simulated quantitative trait loci (QTL) with evenly spaced SNPs, but increased with number of QTL for the selected SNP panels. Loss of accuracy with evenly spaced SNPs increased steadily over generations but was constant when the smaller number individuals that are selected for breeding each generation were also genotyped using the high-density SNP panel. With equal numbers of low-density SNPs, panels with SNPs selected on the basis of the Bayesian approach had the smallest loss in accuracy for a single trait, but a panel with evenly spaced SNPs at 10 cM was only slightly worse, whereas a panel with SNPs selected by forward stepwise selection was inferior. Panels with evenly spaced SNPs can, however, be used across traits and populations and their performance is independent of the number of QTL affecting the trait and of the methods used to estimate effects in the training data and are, therefore, preferred for broad applications in pedigreed populations under artificial selection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genomic selection using different marker types and densities.

              With the availability of high-density marker maps and cost-effective genotyping, genomic selection methods may provide faster genetic gain than can be achieved by current selection methods based on phenotypes and the pedigree. Here we investigate some of the factors driving the accuracy of genomic selection, namely marker density and marker type (i.e., microsatellite and SNP markers), and the use of marker haplotypes versus marker genotypes alone. Different densities were tested with marker densities equivalent to 2, 1, 0.5, and 0.25N(e) markers/morgan using microsatellites and 8, 4, 2, and 1N(e) markers/morgan using SNP, where 1N(e) markers/morgan means 100 markers per morgan, if effective size (N(e)) is 100. Marker characteristics and linkage disequilibria were obtained by simulating a population over 1,000 generations to achieve a mutation drift balance. The marker designs were evaluated for their accuracy of predicting breeding values from either estimating marker effects or estimating effects of haplotypes based upon combining 2 markers. Using microsatellites as direct marker effects, the accuracy of selection increased from 0.63 to 0.83 as the density increased from 0.25N(e)/morgan to 2N(e)/morgan. Using SNP markers as direct marker effects, the accuracy of selection increased from 0.69 to 0.86 as the density increased from 1N(e)/morgan to 8N(e)/morgan. The SNP markers required a 2 to 3 times greater density compared with using microsatellites to achieve a similar accuracy. The biases that genomic selection EBV often show are due to the prediction of marker effects instead of QTL effects, and hence, genomic selection EBV may need rescaling for practical use. Using haplotypes resulted in similar or reduced accuracies compared with using direct marker effects. In practical situations, this means that it is advantageous to use direct marker effects, because this avoids the estimation of marker phases with the associated errors. In general, the results showed that the accuracy remained responsive with small bias to increasing marker density at least up to 8N(e) SNP/morgan, where the effective population size was 100 and with the genomic model assumed. For a 30-morgan genome and N(e) = 100, this implies that about approximately 24,000 SNP are needed.
                Bookmark

                Author and article information

                Contributors
                Journal
                Genet Sel Evol
                Genet. Sel. Evol
                Genetics, Selection, Evolution : GSE
                BioMed Central
                0999-193X
                1297-9686
                2013
                15 October 2013
                : 45
                : 1
                : 39
                Affiliations
                [1 ]Nofima AS, P.O. Box 210, N-1431, Ås, Norway
                [2 ]Department of Animal and Aquacultural Sciences, University of Life Sciences, P.O. Box 5010, N-1432, Ås, Norway
                Article
                1297-9686-45-39
                10.1186/1297-9686-45-39
                3854107
                24127852
                06871afd-89f6-4e66-bead-3680069c14b6
                Copyright © 2013 Lillehammer et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 February 2013
                : 23 August 2013
                Categories
                Research

                Genetics
                Genetics

                Comments

                Comment on this article