Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature

      eLife

      eLife Sciences Publications, Ltd

      host-microbiome interaction, host-microbiome mutualism, hologenome, microbiome acclimation, poikilothermic organism, tilapia, other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The hologenome concept proposes that microbes and their host organism are an independent unit of selection. Motivated by this concept, we hypothesized that thermal acclimation in poikilothermic organisms, owing to their inability to maintain their body temperature, is connected to their microbiome composition. To test this hypothesis, we used a unique experimental setup with a transgenerational selective breeding scheme for cold tolerance in tropical tilapias. We tested the effects of the selection on the gut microbiome and on host transcriptomic response. Interestingly, we found that host genetic selection for thermal tolerance shapes the microbiome composition and its response to cold. The microbiomes of cold-resistant fish showed higher resilience to temperature changes, indicating that the microbiome is shaped by its host's selection. These findings are consistent with the hologenome concept and highlight the connection between the host and its microbiome's response to the environment.

          Related collections

          Most cited references 58

          • Record: found
          • Abstract: found
          • Article: not found

          Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.

          DAVID bioinformatics resources consists of an integrated biological knowledgebase and analytic tools aimed at systematically extracting biological meaning from large gene/protein lists. This protocol explains how to use DAVID, a high-throughput and integrated data-mining environment, to analyze gene lists derived from high-throughput genomic experiments. The procedure first requires uploading a gene list containing any number of common gene identifiers followed by analysis using one or more text and pathway-mining tools such as gene functional classification, functional annotation chart or clustering and functional annotation table. By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2

            In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html. Electronic supplementary material The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              KEGG: kyoto encyclopedia of genes and genomes.

               M Kanehisa (2000)
              KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).
                Bookmark

                Author and article information

                Journal
                10.7554/eLife.36398
                6277203
                30454554

                http://creativecommons.org/licenses/by/4.0/

                Comments

                Comment on this article