5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biology of heat stress; the nexus between intestinal hyperpermeability and swine reproduction

      , , , ,
      Theriogenology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references190

          • Record: found
          • Abstract: found
          • Article: not found

          Endocrinology of the stress response.

          The stress response is subserved by the stress system, which is located both in the central nervous system and the periphery. The principal effectors of the stress system include corticotropin-releasing hormone (CRH); arginine vasopressin; the proopiomelanocortin-derived peptides alpha-melanocyte-stimulating hormone and beta-endorphin, the glucocorticoids; and the catecholamines norepinephrine and epinephrine. Appropriate responsiveness of the stress system to stressors is a crucial prerequisite for a sense of well-being, adequate performance of tasks, and positive social interactions. By contrast, inappropriate responsiveness of the stress system may impair growth and development and may account for a number of endocrine, metabolic, autoimmune, and psychiatric disorders. The development and severity of these conditions primarily depend on the genetic vulnerability of the individual, the exposure to adverse environmental factors, and the timing of the stressful events, given that prenatal life, infancy, childhood, and adolescence are critical periods characterized by increased vulnerability to stressors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of heat stress on postabsorptive metabolism and energetics.

            Environmental-induced hyperthermia compromises efficient animal production and jeopardizes animal welfare. Reduced productive output during heat stress was traditionally thought to result from decreased nutrient intake. Our observations challenge this dogma and indicate that heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independent of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident through changes such as basal and stimulated circulating insulin levels. Hepatocyte and myocyte metabolism also show clear differences in glucose production and use during heat stress. Perhaps most intriguing, given the energetic shortfall of the heat-stressed animal, is the apparent lack of fat mobilization from adipose tissue coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glucocorticoids, prenatal stress and the programming of disease.

              An adverse foetal environment is associated with increased risk of cardiovascular, metabolic, neuroendocrine and psychological disorders in adulthood. Exposure to stress and its glucocorticoid hormone mediators may underpin this association. In humans and in animal models, prenatal stress, excess exogenous glucocorticoids or inhibition of 11β-hydroxysteroid dehydrogenase type 2 (HSD2; the placental barrier to maternal glucocorticoids) reduces birth weight and causes hyperglycemia, hypertension, increased HPA axis reactivity, and increased anxiety-related behaviour. Molecular mechanisms that underlie the 'developmental programming' effects of excess glucocorticoids/prenatal stress include epigenetic changes in target gene promoters. In the case of the intracellular glucocorticoid receptor (GR), this alters tissue-specific GR expression levels, which has persistent and profound effects on glucocorticoid signalling in certain tissues (e.g. brain, liver, and adipose). Crucially, changes in gene expression persist long after the initial challenge, predisposing the individual to disease in later life. Intriguingly, the effects of a challenged pregnancy appear to be transmitted possibly to one or two subsequent generations, suggesting that these epigenetic effects persist. Copyright © 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Theriogenology
                Theriogenology
                Elsevier BV
                0093691X
                September 2020
                September 2020
                : 154
                : 73-83
                Article
                10.1016/j.theriogenology.2020.05.023
                32531658
                069c1e63-227b-4cd2-8062-40acf620fd85
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://www.elsevier.com/open-access/userlicense/1.0/

                History

                Comments

                Comment on this article