24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression characteristics of dual-promoter lentiviral vectors targeting retinal photoreceptors and Müller cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Growing evidence suggests that successful treatment of many inherited photoreceptor diseases will require multi-protein therapies that not only correct the genetic defects linked to these diseases but also slow or halt the related degenerative phenotypes. To be effective, it is likely that therapeutic protein expression will need to be targeted to specific cell types. The purpose of this study was to develop dual-promoter lentiviral vectors that target expression of two proteins to retinal cones and rods, rods only, or Müller cells.

          Methods

          Dual-promoter lentivectors were constructed using the following promoters: Xenopus opsin promoter (XOPS)1.3, murine opsin promoter (MOPS), interphotoreceptor retinoid binding protein promoter (IRBP156), rhodopsin kinase (RK), neural retina leucine zipper (NRLL), vimentin (VIM), cluster differentiation (CD44), and glial fibrillary acidic protein (GFAP). Vectors were packaged and injected into the neural tubes of chicken embryos. The activities of the promoters alone, in duplicate, or when paired with a different promoter were analyzed in transduced, fully-developed retinas, using direct fluorescent and immunofluorescent microscopy.

          Results

          IRBP156, NRLL, and RK were active in cones and rods while XOPS1.3 was active only in rods. Of the glial promoters, only GFAP activity was restricted to Müller cells; both VIM and CD44 were active in Müller and neural cells. Dual-promoter vectors carrying IRBP156 and RK or XOPS1.3 and MOPS, in the order listed, exhibited robust expression of both reporter transgenes in cones and rods or rods only, respectively. Expression of the upstream transgene was much lower than the downstream transgene in dual-promoter vectors constructed using two copies of either RK or IRBP156. Analyses of the expression of a dual-promoter vector carrying CD44 and VIM in the order listed showed that the activity of the VIM promoter was more restricted to glial cells when paired with the CD44 promoter, while the activity of the CD44 promoter was inhibited to the extent that no CD44-driven reporter protein was detected in transduced cells.

          Conclusions

          We have identified two dual-promoter vectors, one that targets cones and rods and one that targets rods alone. Both vectors reliably express the two proteins encoded by the transgenes they carry. When two well matched promoters are not available, we found that it is possible to target expression of two proteins to single cells using dual-promoter vectors carrying two copies of the same promoter. These vectors should be useful in studies of retina when co-delivery of a reporter protein with an experimental protein is desired or when expression of two exogenous proteins in targeted cells is required.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector.

          Attempts to generate reliable and versatile vectors for gene therapy and biomedical research that express multiple genes have met with limited success. Here we used Picornavirus 'self-cleaving' 2A peptides, or 2A-like sequences from other viruses, to generate multicistronic retroviral vectors with efficient translation of four cistrons. Using the T-cell receptor:CD3 complex as a test system, we show that a single 2A peptide-linked retroviral vector can be used to generate all four CD3 proteins (CD3epsilon, gamma, delta, zeta), and restore T-cell development and function in CD3-deficient mice. We also show complete 2A peptide-mediated 'cleavage' and stoichiometric production of two fluorescent proteins using a fluorescence resonance energy transfer-based system in multiple cell types including blood, thymus, spleen, bone marrow and early stem cell progenitors.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A series of normal stages in the development of the chick embryo. 1951.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Targeting of GFP to newborn rods by Nrl promoter and temporal expression profiling of flow-sorted photoreceptors.

              The Maf-family transcription factor Nrl is a key regulator of photoreceptor differentiation in mammals. Ablation of the Nrl gene in mice leads to functional cones at the expense of rods. We show that a 2.5-kb Nrl promoter segment directs the expression of enhanced GFP specifically to rod photoreceptors and the pineal gland of transgenic mice. GFP is detected shortly after terminal cell division, corresponding to the timing of rod genesis revealed by birthdating studies. In Nrl-/- retinas, the GFP+ photoreceptors express S-opsin, consistent with the transformation of rod precursors into cones. We report the gene profiles of freshly isolated flow-sorted GFP+ photoreceptors from wild-type and Nrl-/- retinas at five distinct developmental stages. Our results provide a framework for establishing gene regulatory networks that lead to mature functional photoreceptors from postmitotic precursors. Differentially expressed rod and cone genes are excellent candidates for retinopathies.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2010
                27 May 2010
                : 16
                : 916-934
                Affiliations
                [1 ]Department of Neuroscience, University of Florida McKnight Brain Institute, Gainesville, FL
                [2 ]Schepens Eye Research Institute, Boston, MA
                [3 ]Department of Ophthalmology, University of Florida, Gainesville, FL
                Author notes
                Correspondence to: Susan L. Semple-Rowland, Department of Neuroscience, University of Florida McKnight Brain Institute, 100 Newell Dr., Rm L1-100 Box 100244, Gainesville, FL, 32610-0244; Phone: (352) 392-3598; FAX: (352) 392-8347; email: rowland@ 123456mbi.ufl.edu
                Article
                102 2010MOLVIS0075
                2878367
                20517486
                06b1e37b-1caf-48b4-b7e9-f0ecf0e8e7cf
                Copyright © 2010 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 04 March 2010
                : 23 May 2010
                Categories
                Research Article
                Custom metadata
                Export to XML
                Semple-Rowland

                Vision sciences
                Vision sciences

                Comments

                Comment on this article