29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction

      review-article
      1 , *
      Translational Psychiatry
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The amygdala integrates and processes incoming information pertinent to reward and to emotions such as fear and anxiety that promote survival by warning of potential danger. Basolateral amygdala (BLA) communicates bi-directionally with brain regions affecting cognition, motivation and stress responses including prefrontal cortex, hippocampus, nucleus accumbens and hindbrain regions that trigger norepinephrine-mediated stress responses. Disruption of intrinsic amygdala and BLA regulatory neurocircuits is often caused by dysfunctional neuroplasticity frequently due to molecular alterations in local GABAergic circuits and principal glutamatergic output neurons. Changes in local regulation of BLA excitability underlie behavioral disturbances characteristic of disorders including post-traumatic stress syndrome (PTSD), autism, attention-deficit hyperactivity disorder (ADHD) and stress-induced relapse to drug use. In this Review, we discuss molecular mechanisms and neural circuits that regulate physiological and stress-induced dysfunction of BLA/amygdala and its principal output neurons. We consider effects of stress on motivated behaviors that depend on BLA; these include drug taking and drug seeking, with emphasis on nicotine-dependent behaviors. Throughout, we take a translational approach by integrating decades of addiction research on animal models and human trials. We show that changes in BLA function identified in animal addiction models illuminate human brain imaging and behavioral studies by more precisely delineating BLA mechanisms. In summary, BLA is required to promote responding for natural reward and respond to second-order drug-conditioned cues; reinstate cue-dependent drug seeking; express stress-enhanced reacquisition of nicotine intake; and drive anxiety and fear. Converging evidence indicates that chronic stress causes BLA principal output neurons to become hyperexcitable.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: not found
          • Article: not found

          The BDNF val66met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neurocircuitry models of posttraumatic stress disorder and extinction: human neuroimaging research--past, present, and future.

            The prevailing neurocircuitry models of anxiety disorders have been amygdalocentric in form. The bases for such models have progressed from theoretical considerations, extrapolated from research in animals, to in vivo human imaging data. For example, one current model of posttraumatic stress disorder (PTSD) has been highly influenced by knowledge from rodent fear conditioning research. Given the phenomenological parallels between fear conditioning and the pathogenesis of PTSD, we have proposed that PTSD is characterized by exaggerated amygdala responses (subserving exaggerated acquisition of fear associations and expression of fear responses) and deficient frontal cortical function (mediating deficits in extinction and the capacity to suppress attention/response to trauma-related stimuli), as well as deficient hippocampal function (mediating deficits in appreciation of safe contexts and explicit learning/memory). Neuroimaging studies have yielded convergent findings in support of this model. However, to date, neuroimaging investigations of PTSD have not principally employed conditioning and extinction paradigms per se. The recent development of such imaging probes now sets the stage for directly testing hypotheses regarding the neural substrates of fear conditioning and extinction abnormalities in PTSD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chronic stress causes frontostriatal reorganization and affects decision-making.

              The ability to shift between different behavioral strategies is necessary for appropriate decision-making. Here, we show that chronic stress biases decision-making strategies, affecting the ability of stressed animals to perform actions on the basis of their consequences. Using two different operant tasks, we revealed that, in making choices, rats subjected to chronic stress became insensitive to changes in outcome value and resistant to changes in action-outcome contingency. Furthermore, chronic stress caused opposing structural changes in the associative and sensorimotor corticostriatal circuits underlying these different behavioral strategies, with atrophy of medial prefrontal cortex and the associative striatum and hypertrophy of the sensorimotor striatum. These data suggest that the relative advantage of circuits coursing through sensorimotor striatum observed after chronic stress leads to a bias in behavioral strategies toward habit.
                Bookmark

                Author and article information

                Journal
                Transl Psychiatry
                Transl Psychiatry
                Translational Psychiatry
                Nature Publishing Group
                2158-3188
                August 2017
                08 August 2017
                1 August 2017
                : 7
                : 8
                : e1194
                Affiliations
                [1 ]Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center , Memphis, TN, USA
                Author notes
                [* ]Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center , 19S. Manassas, CRB #220, Memphis, TN 38103, USA. E-mail: bsharp@ 123456uthsc.edu
                Article
                tp2017161
                10.1038/tp.2017.161
                5611728
                28786979
                06b94483-32ec-40f8-9761-d69fa633b1b4
                Copyright © 2017 The Author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

                History
                : 17 January 2017
                : 16 May 2017
                : 08 June 2017
                Categories
                Review

                Clinical Psychology & Psychiatry
                Clinical Psychology & Psychiatry

                Comments

                Comment on this article