17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Luteolin inhibits multi-heavy metal mixture-induced HL7702 cell apoptosis through downregulation of ROS-activated mitochondrial pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          With the rapid economic development in recent years, China is facing a great challenge due to heavy metal pollution. The heavy metals may enter the human body through ingestion of aqua products to cause great health risks. In the present study, the inhibitory effects of luteolin on the combined toxicity of multi-heavy metals (including zinc, manganese, lead, copper, cadmium, mercury, chromium and nickel) were investigated in HL7702 hepatocyte cells. An MTT assay demonstrated that 20 μM luteolin significantly alleviated the multi-heavy metal mixture-induced cell death and morphological changes. Furthermore, 20 μM luteolin significantly inhibited multi-heavy metal mixture-induced reactive oxygen species (ROS) generation, lipid peroxidation (malondialdehyde content) and caused a decrease in adenosine triphosphate levels in HL7702 cells. A JC-1 staining assay indicated that 20 μM luteolin inhibited the mitochondrial membrane potential-reducing effect of the multi-heavy metal mixture. Apoptotic assays revealed that the multi-heavy metal mixture induced HL7702 cell apoptosis in a dose-dependent manner, which was significantly inhibited by 20 μM luteolin. Western blot analysis indicated that addition of luteolin to the multi-heavy metal mixture significantly alleviated cytochrome c release from the mitochondria into the cytosol. In addition, 20 μM luteolin had a significant inhibitory effect on multi-heavy metal mixture-induced cleavage of caspase-9, caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein. Immunofluorescence staining demonstrated that addition of luteolin significantly alleviated caspase-3 cleavage induced by the multi-heavy metal mixture. The present results suggested luteolin exerts its inhibitory effects of on multi-heavy metal mixture induced cell apoptosis through downregulation of the ROS-activated mitochondrial pathway.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane.

          In many types of apoptosis, the proapoptotic protein Bax undergoes a change in conformation at the level of the mitochondria. This event always precedes the release of mitochondrial cytochrome c, which, in the cytosol, activates caspases through binding to Apaf-1. The mechanisms by which Bax triggers cytochrome c release are unknown. Here we show that following binding to the BH3-domain-only proapoptotic protein Bid, Bax oligomerizes and then integrates in the outer mitochondrial membrane, where it triggers cytochrome c release. Bax mitochondrial membrane insertion triggered by Bid may represent a key step in pathways leading to apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation.

            Recent studies indicated the role of ROS toward antibacterial activity. In our study we report ROS mediated membrane lipid oxidation of Escherichia coli treated with ZnO nanoparticles (NPs) as supported by detection and spectrophotometric measurement of malondialdehyde (MDA) by TBARS (thiobarbituric acid-reactive species) assay. The antibacterial effects of ZnO NPs were studied by measuring the growth curve of E. coli, which showed concentration dependent bacteriostatic and bacteriocidal effects of ZnO NPs. The antibacterial effects were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Further, antibacterial effect of ZnO NPs was found to decrease by introducing histidine to the culture medium treated with ZnO NPs. The ROS scavenging action of histidine was confirmed by treating histidine to the batch of Escherichia coli+ZnO NPs at the end of the lag phase of the growth curve (Set-I) and during inoculation (Set-II). A moderate bacteriostatic effect (lag in the E. coli growth) was observed in Set-II batch while Set-I showed no bacteriostatic effect. From these evidences we confirmed that the antibacterial effect of bare as well as TG capped ZnO NPs were due to membrane lipid peroxidation caused by the ROS generated during ZnO NPs interaction in culture medium. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome.

              Apoptosis is an evolutionarily conserved cell suicide process executed by cysteine proteases (caspases) and regulated by the opposing factions of the Bcl-2 protein family. Mammalian caspase-9 and its activator Apaf-1 were thought to be essential, because mice lacking either of them display neuronal hyperplasia and their lymphocytes and fibroblasts seem resistant to certain apoptotic stimuli. Because Apaf-1 requires cytochrome c to activate caspase-9, and Bcl-2 prevents mitochondrial cytochrome c release, Bcl-2 is widely believed to inhibit apoptosis by safeguarding mitochondrial membrane integrity. Our results suggest a different, broader role, because Bcl-2 overexpression increased lymphocyte numbers in mice and inhibited many apoptotic stimuli, but the absence of Apaf-1 or caspase-9 did not. Caspase activity was still discernible in cells lacking Apaf-1 or caspase-9, and a potent caspase antagonist both inhibited apoptosis and retarded cytochrome c release. We conclude that Bcl-2 regulates a caspase activation programme independently of the cytochrome c/Apaf-1/caspase-9 'apoptosome', which seems to amplify rather than initiate the caspase cascade.
                Bookmark

                Author and article information

                Journal
                Int J Mol Med
                Int. J. Mol. Med
                IJMM
                International Journal of Molecular Medicine
                D.A. Spandidos
                1107-3756
                1791-244X
                January 2018
                27 October 2017
                27 October 2017
                : 41
                : 1
                : 233-241
                Affiliations
                [1 ]Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211
                [2 ]Department of Prevention and Healthcare, The People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Zhejiang University School of Medicine, Ningbo, Zhejiang 315800, P.R. China
                Author notes
                Correspondence to: Dr Jinshun Zhao, Department of Preventative Medicine, Zhejiang Provincial Key Laboratory of Pathological and Physiological Technology, School of Medicine, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, P.R. China, E-mail: zhaojinshun@ 123456nbu.edu.cn
                Mr. Yuanliang Gu, Department of Prevention and Healthcare, The People's Hospital of Beilun District, Beilun Branch Hospital of The First Affiliated Hospital of Zhejiang University School of Medicine, 1288 Lushan East Road, Beilun, Ningbo, Zhejiang 315800, P.R. China, E-mail: gurice@ 123456yeah.net
                Article
                ijmm-41-01-0233
                10.3892/ijmm.2017.3219
                5746289
                29115570
                06c3a6bd-fbd9-44ab-a9a8-482cb3131494
                Copyright: © Wang et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 12 April 2017
                : 17 October 2017
                Categories
                Articles

                heavy metal,combined toxicity,apoptosis,reactive oxygen species,luteolin,inhibition,mitochondrial pathway

                Comments

                Comment on this article