33
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring an Efficient Remote Biomedical Signal Monitoring Framework for Personal Health in the COVID-19 Pandemic

      , , ,
      International Journal of Environmental Research and Public Health
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nowadays people are mostly focused on their work while ignoring their health which in turn is creating a drastic effect on their health in the long run. Remote health monitoring through telemedicine can help people discover potential health threats in time. In the COVID-19 pandemic, remote health monitoring can help obtain and analyze biomedical signals including human body temperature without direct body contact. This technique is of great significance to achieve safe and efficient health monitoring in the COVID-19 pandemic. Existing remote biomedical signal monitoring methods cannot effectively analyze the time series data. This paper designs a remote biomedical signal monitoring framework combining the Internet of Things (IoT), 5G communication and artificial intelligence techniques. In the constructed framework, IoT devices are used to collect biomedical signals at the perception layer. Subsequently, the biomedical signals are transmitted through the 5G network to the cloud server where the GRU-AE deep learning model is deployed. It is noteworthy that the proposed GRU-AE model can analyze multi-dimensional biomedical signals in time series. Finally, this paper conducts a 24-week monitoring experiment for 2000 subjects of different ages to obtain real data. Compared with the traditional biomedical signal monitoring method based on the AutoEncoder model, the GRU-AE model has better performance. The research has an important role in promoting the development of biomedical signal monitoring techniques, which can be effectively applied to some kinds of remote health monitoring scenario.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              History of artificial intelligence in medicine

              Artificial intelligence (AI) was first described in 1950; however, several limitations in early models prevented widespread acceptance and application to medicine. In the early 2000s, many of these limitations were overcome by the advent of deep learning. Now that AI systems are capable of analyzing complex algorithms and self-learning, we enter a new age in medicine where AI can be applied to clinical practice through risk assessment models, improving diagnostic accuracy and workflow efficiency. This article presents a brief historical perspective on the evolution of AI over the last several decades and the introduction and development of AI in medicine in recent years. A brief summary of the major applications of AI in gastroenterology and endoscopy are also presented, which are reviewed in further detail by several other articles in this issue of Gastrointestinal Endoscopy.
                Bookmark

                Author and article information

                Contributors
                Journal
                IJERGQ
                International Journal of Environmental Research and Public Health
                IJERPH
                MDPI AG
                1660-4601
                September 2021
                August 27 2021
                : 18
                : 17
                : 9037
                Article
                10.3390/ijerph18179037
                34501625
                06e43e2e-8aa6-48d5-a153-30983c3db980
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article