3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effect of standoff distance and surface roughness on biofilm disruption using cavitation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Effective biofilm removal from surfaces in the mouth is a clinical challenge. Cavitation bubbles generated around a dental ultrasonic scaler are being investigated as a method to remove biofilms effectively. It is not known how parameters such as surface roughness and instrument distance from biofilm affect the removal. We grew Strepotococcus sanguinis biofilms on coverslips and titanium discs with varying surface roughness (between 0.02–3.15 μm). Experimental studies were carried out for the biofilm removal using high speed imaging and image analysis to calculate the area of biofilm removed at varying ultrasonic scaler standoff distances from the biofilm. We found that surface roughness up to 2 μm does not adversely affect biofilm removal but a surface roughness of 3 μm caused less biofilm removal. The standoff distance also has different effects depending on the surface roughness but overall a distance of 1 mm is just as effective as a distance of 0.5 mm. The results show significant biofilm removal due to an ultrasonic scaler tip operating for only 2s versus 15-60s in previous studies. The technique developed for high speed imaging and image analysis of biofilm removal can be used to investigate physical biofilm disruption from biomaterial surfaces in other fields.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of titanium surface topography on bone integration: a systematic review.

          To analyse possible effects of titanium surface topography on bone integration. Our analyses were centred on a PubMed search that identified 1184 publications of assumed relevance; of those, 1064 had to be disregarded because they did not accurately present in vivo data on bone response to surface topography. The remaining 120 papers were read and analysed, after removal of an additional 20 papers that mainly dealt with CaP-coated and Zr implants; 100 papers remained and formed the basis for this paper. The bone response to differently configurated surfaces was mainly evaluated by histomorphometry (bone-to-implant contact), removal torque and pushout/pullout tests. A huge number of the experimental investigations have demonstrated that the bone response was influenced by the implant surface topography; smooth (S(a) 1-2 microm) surfaces showed stronger bone responses than rough (S(a)>2 microm) in some studies. One limitation was that it was difficult to compare many studies because of the varying quality of surface evaluations; a surface termed 'rough' in one study was not uncommonly referred to as 'smooth' in another; many investigators falsely assumed that surface preparation per se identified the roughness of the implant; and many other studies used only qualitative techniques such as SEM. Furthermore, filtering techniques differed or only height parameters (S(a), R(a)) were reported. * Surface topography influences bone response at the micrometre level. * Some indications exist that surface topography influences bone response at the nanometre level. * The majority of published papers present an inadequate surface characterization. * Measurement and evaluation techniques need to be standardized. * Not only height descriptive parameters but also spatial and hybrid ones should be used.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of material characteristics and/or surface topography on biofilm development.

            From an ecological viewpoint, the oral cavity, in fact the oro-pharynx, is an 'open growth system'. It undergoes an uninterrupted introduction and removal of both microorganisms and nutrients. In order to survive within the oro-pharyngeal area, bacteria need to adhere either to the soft or hard tissues in order to resist shear forces. The fast turn-over of the oral lining epithelia (shedding 3 x/day) is an efficient defence mechanism as it prevents the accumulation of large masses of microorganisms. Teeth, dentures, or endosseous implants, however, providing non-shedding surfaces, allow the formation of thick biofilms. In general, the established biofilm maintains an equilibrium with the host. An uncontrolled accumulation and/or metabolism of bacteria on the hard surfaces forms, however, the primary cause of dental caries, gingivitis, periodontitis, peri-implantitis, and stomatitis. This systematic review aimed to evaluate critically the impact of surface characteristics (free energy, roughness, chemistry) on the de novo biofilm formation, especially in the supragingival and to a lesser extent in the subgingival areas. An electronic Medline search (from 1966 until July 2005) was conducted applying the following search items: 'biofilm formation and dental/oral implants/surface characteristics', 'surface characteristics and implants', 'biofilm formation and oral', 'plaque/biofilm and roughness', 'plaque/biofilm and surface free energy', and 'plaque formation and implants'. Only clinical studies within the oro-pharyngeal area were included. From a series of split-mouth studies, it could be concluded that both an increase in surface roughness above the R(a) threshold of 0.2 microm and/or of the surface-free energy facilitates biofilm formation on restorative materials. When both surface characteristics interact with each other, surface roughness was found to be predominant. The biofilm formation is also influenced by the type (chemical composition) of biomaterial or the type of coating. Direct comparisons in biofilm formation on different transmucosal implant surfaces are scars. Extrapolation of data from studies on different restorative materials seems to indicate that transmucosal implant surfaces with a higher surface roughness/surface free energy facilitate biofilm formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The interaction of cells and bacteria with surfaces structured at the nanometre scale.

              The current development of nanobiotechnologies requires a better understanding of cell-surface interactions on the nanometre scale. Recently, advances in nanoscale patterning and detection have allowed the fabrication of appropriate substrates and the study of cell-substrate interactions. In this review we discuss the methods currently available for nanoscale patterning and their merits, as well as techniques for controlling the surface chemistry of materials at the nanoscale without changing the nanotopography and the possibility of truly characterizing the surface chemistry at the nanoscale. We then discuss the current knowledge of how a cell can interact with a substrate at the nanoscale and the effect of size, morphology, organization and separation of nanofeatures on cell response. Moreover, cell-substrate interactions are mediated by the presence of proteins adsorbed from biological fluids on the substrate. Many questions remain on the effect of nanotopography on protein adsorption. We review papers related to this point. As all these parameters have an influence on cell response, it is important to develop specific studies to point out their relative influence, as well as the biological mechanisms underlying cell responses to nanotopography. This will be the basis for future research in this field. An important topic in tissue engineering is the effect of nanoscale topography on bacteria, since cells have to compete with bacteria in many environments. The limited current knowledge of this topic is also discussed in the light of using topography to encourage cell adhesion while limiting bacterial adhesion. We also discuss current and prospective applications of cell-surface interactions on the nanoscale. Finally, based on questions raised previously that remain to be solved in the field, we propose future directions of research in materials science to help elucidate the relative influence of the physical and chemical aspects of nanotopography on bacteria and cell response with the aim of contributing to the development of nanobiotechnologies. 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: SoftwareRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: MethodologyRole: SupervisionRole: Writing – review & editing
                Role: MethodologyRole: Writing – review & editing
                Role: ConceptualizationRole: Writing – review & editing
                Role: MethodologyRole: Writing – review & editing
                Role: Writing – review & editing
                Role: Funding acquisitionRole: Project administrationRole: ResourcesRole: SupervisionRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                30 July 2020
                2020
                : 15
                : 7
                : e0236428
                Affiliations
                [1 ] School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
                [2 ] Department of Prosthetic Dentistry/Dental Materials Science, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
                [3 ] School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, United Kingdom
                University of Notre Dame, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0001-5112-9099
                Article
                PONE-D-20-04575
                10.1371/journal.pone.0236428
                7392287
                32730291
                06f60ac7-2512-48b2-8b64-8c9c494a07ef
                © 2020 Vyas et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 February 2020
                : 6 July 2020
                Page count
                Figures: 8, Tables: 1, Pages: 16
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100000266, Engineering and Physical Sciences Research Council;
                Award ID: EP/P015743/1
                Award Recipient :
                NV, QXW and ADW recieved funding from the Engineering and Physical Sciences Research Council (EPSRC) (EP/P015743/1). https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P015743/1 The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Microbiology
                Bacteriology
                Bacterial Biofilms
                Biology and Life Sciences
                Microbiology
                Biofilms
                Bacterial Biofilms
                Biology and Life Sciences
                Microbiology
                Biofilms
                Medicine and Health Sciences
                Diagnostic Medicine
                Diagnostic Radiology
                Ultrasound Imaging
                Research and Analysis Methods
                Imaging Techniques
                Diagnostic Radiology
                Ultrasound Imaging
                Medicine and Health Sciences
                Radiology and Imaging
                Diagnostic Radiology
                Ultrasound Imaging
                Biology and Life Sciences
                Bioengineering
                Biotechnology
                Medical Devices and Equipment
                Medical Implants
                Biomaterial Implants
                Engineering and Technology
                Bioengineering
                Biotechnology
                Medical Devices and Equipment
                Medical Implants
                Biomaterial Implants
                Medicine and Health Sciences
                Medical Devices and Equipment
                Medical Implants
                Biomaterial Implants
                Physical Sciences
                Chemistry
                Chemical Elements
                Titanium
                Research and Analysis Methods
                Imaging Techniques
                Image Analysis
                Biology and Life Sciences
                Bioengineering
                Biotechnology
                Medical Devices and Equipment
                Medical Implants
                Titanium Implants
                Engineering and Technology
                Bioengineering
                Biotechnology
                Medical Devices and Equipment
                Medical Implants
                Titanium Implants
                Medicine and Health Sciences
                Medical Devices and Equipment
                Medical Implants
                Titanium Implants
                Research and Analysis Methods
                Microscopy
                Electron Microscopy
                Scanning Electron Microscopy
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article