13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Toxicological implications of mitochondrial localization of CYP2E1

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review discusses links between mitochondria-localized cytochrome P450 2E1 (CYP2E1) and toxicity, particularly mitochondrial dysfunction, and poses open questions in this emerging field.

          Abstract

          Cytochrome P450 2E1 (CYP2E1) metabolizes an extensive array of pollutants, drugs, and other small molecules, often resulting in bioactivation to reactive metabolites. Therefore, it is unsurprising that it has been the subject of decades of research publications and reviews. However, while CYP2E1 has historically been studied in the endoplasmic reticulum (erCYP2E1), active CYP2E1 is also present in mitochondria (mtCYP2E1). Relatively few studies have specifically focused on mtCYP2E1, but there is growing interest in this form of the enzyme as a driver in toxicological mechanisms given its activity and location. Many previous studies have linked total CYP2E1 to conditions that involve mitochondrial dysfunction (fasting, diabetes, non-alcoholic steatohepatitis, and obesity). Furthermore, a large number of reactive metabolites that are formed by CYP2E1 through metabolism of drugs and pollutants have been demonstrated to cause mitochondrial dysfunction. Finally, there appears to be significant inter-individual variability in targeting to the mitochondria, which could constitute a source of variability in individual response to exposures. This review discusses those outcomes, the biochemical properties and toxicological consequences of mtCYP2E1, and highlights important knowledge gaps and future directions. Overall, we feel that this exciting area of research is rich with new and important questions about the relationship between mtCYP2E1, mitochondrial dysfunction, and pathology.

          Related collections

          Most cited references129

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms of hepatotoxicity.

          H Jaeschke (2002)
          This review addresses recent advances in specific mechanisms of hepatotoxicity. Because of its unique metabolism and relationship to the gastrointestinal tract, the liver is an important target of the toxicity of drugs, xenobiotics, and oxidative stress. In cholestatic disease, endogenously generated bile acids produce hepatocellular apoptosis by stimulating Fas translocation from the cytoplasm to the plasma membrane where self-aggregation occurs to trigger apoptosis. Kupffer cell activation and neutrophil infiltration extend toxic injury. Kupffer cells release reactive oxygen species (ROS), cytokines, and chemokines, which induce neutrophil extravasation and activation. The liver expresses many cytochrome P450 isoforms, including ethanol-induced CYP2E1. CYP2E1 generates ROS, activates many toxicologically important substrates, and may be the central pathway by which ethanol causes oxidative stress. In acetaminophen toxicity, nitric oxide (NO) scavenges superoxide to produce peroxynitrite, which then causes protein nitration and tissue injury. In inducible nitric oxide synthase (iNOS) knockout mice, nitration is prevented, but unscavenged superoxide production then causes toxic lipid peroxidation to occur instead. Microvesicular steatosis, nonalcoholic steatohepatitis (NASH), and cytolytic hepatitis involve mitochondrial dysfunction, including impairment of mitochondrial fatty acid beta-oxidation, inhibition of mitochondrial respiration, and damage to mitochondrial DNA. Induction of the mitochondrial permeability transition (MPT) is another mechanism causing mitochondrial failure, which can lead to necrosis from ATP depletion or caspase-dependent apoptosis if ATP depletion does not occur fully. Because of such diverse mechanisms, hepatotoxicity remains a major reason for drug withdrawal from pharmaceutical development and clinical use.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Dysregulated metabolism contributes to oncogenesis.

            Cancer is a disease characterized by unrestrained cellular proliferation. In order to sustain growth, cancer cells undergo a complex metabolic rearrangement characterized by changes in metabolic pathways involved in energy production and biosynthetic processes. The relevance of the metabolic transformation of cancer cells has been recently included in the updated version of the review "Hallmarks of Cancer", where dysregulation of cellular metabolism was included as an emerging hallmark. While several lines of evidence suggest that metabolic rewiring is orchestrated by the concerted action of oncogenes and tumor suppressor genes, in some circumstances altered metabolism can play a primary role in oncogenesis. Recently, mutations of cytosolic and mitochondrial enzymes involved in key metabolic pathways have been associated with hereditary and sporadic forms of cancer. Together, these results demonstrate that aberrant metabolism, once seen just as an epiphenomenon of oncogenic reprogramming, plays a key role in oncogenesis with the power to control both genetic and epigenetic events in cells. In this review, we discuss the relationship between metabolism and cancer, as part of a larger effort to identify a broad-spectrum of therapeutic approaches. We focus on major alterations in nutrient metabolism and the emerging link between metabolism and epigenetics. Finally, we discuss potential strategies to manipulate metabolism in cancer and tradeoffs that should be considered. More research on the suite of metabolic alterations in cancer holds the potential to discover novel approaches to treat it.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity.

              Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the West. In mice, APAP hepatotoxicity can be rapidly induced with a single dose. Because it is both clinically relevant and experimentally convenient, APAP intoxication has become a popular model of liver injury. Early data demonstrated that rats are resistant to APAP toxicity. As a result, mice are the preferred species for mechanistic studies. Furthermore, recent work has shown that the mechanisms of APAP toxicity in humans are similar to mice. Nevertheless, some investigators still use rats. New mechanistic information from the last forty years invites a reevaluation of the differences between these species. Comparison may provide interesting insights and confirm or exclude the rat as an option for APAP studies. To this end, we treated rats and mice with APAP and measured parameters of liver injury, APAP metabolism, oxidative stress, and activation of the c-Jun N-terminal kinase (JNK). Consistent with earlier data, we found that rats were highly resistant to APAP toxicity. Although overall APAP metabolism was similar in both species, mitochondrial protein adducts were significantly lower in rats. Accordingly, rats also had less oxidative stress. Finally, while mice showed extensive activation and mitochondrial translocation of JNK, this could not be detected in rat livers. These data support the hypothesis that mitochondrial dysfunction is critical for the development of necrosis after APAP treatment. Because mitochondrial damage also occurs in humans, rats are not a clinically relevant species for studies of APAP hepatotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                TROEE8
                Toxicology Research
                Toxicol. Res.
                Royal Society of Chemistry (RSC)
                2045-452X
                2045-4538
                2017
                2017
                : 6
                : 3
                : 273-289
                Affiliations
                [1 ]Nicholas School of the Environment
                [2 ]Duke University
                [3 ]Durham
                [4 ]USA
                [5 ]Biochemistry and Molecular Biology
                [6 ]University of Arkansas for Medical Sciences
                [7 ]Little Rock
                Article
                10.1039/C7TX00020K
                5627779
                28989700
                06f72a43-8eda-4c12-a9e7-430403203e5e
                © 2017
                History

                Comments

                Comment on this article