61
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative Stress and Inflammation in Hepatic Diseases: Therapeutic Possibilities of N-Acetylcysteine

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Liver disease is highly prevalent in the world. Oxidative stress (OS) and inflammation are the most important pathogenetic events in liver diseases, regardless the different etiology and natural course. N-acetyl- l-cysteine (the active form) (NAC) is being studied in diseases characterized by increased OS or decreased glutathione (GSH) level. NAC acts mainly on the supply of cysteine for GSH synthesis. The objective of this review is to examine experimental and clinical studies that evaluate the antioxidant and anti-inflammatory roles of NAC in attenuating markers of inflammation and OS in hepatic damage. The results related to the supplementation of NAC in any form of administration and type of study are satisfactory in 85.5% ( n = 59) of the cases evaluated ( n = 69, 100%). Within this percentage, the dosage of NAC utilized in studies in vivo varied from 0.204 up to 2 g/kg/day. A standard experimental design of protection and treatment as well as the choice of the route of administration, with a broader evaluation of OS and inflammation markers in the serum or other biological matrixes, in animal models, are necessary. Clinical studies are urgently required, to have a clear view, so that, the professionals can be sure about the effectiveness and safety of NAC prescription.

          Related collections

          Most cited references226

          • Record: found
          • Abstract: found
          • Article: not found

          ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis.

          Reactive oxygen species (ROS) have been shown to be toxic but also function as signalling molecules. This biological paradox underlies mechanisms that are important for the integrity and fitness of living organisms and their ageing. The pathways that regulate ROS homeostasis are crucial for mitigating the toxicity of ROS and provide strong evidence about specificity in ROS signalling. By taking advantage of the chemistry of ROS, highly specific mechanisms have evolved that form the basis of oxidant scavenging and ROS signalling systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence.

            In efforts to inform public health decision makers, the Global Burden of Diseases, Injuries, and Risk Factors 2010 (GBD2010) Study aims to estimate the burden of disease using available parameters. This study was conducted to collect and analyze available prevalence data to be used for estimating the hepatitis C virus (HCV) burden of disease. In this systematic review, antibody to HCV (anti-HCV) seroprevalence data from 232 articles were pooled to estimate age-specific seroprevalence curves in 1990 and 2005, and to produce age-standardized prevalence estimates for each of 21 GBD regions using a model-based meta-analysis. This review finds that globally the prevalence and number of people with anti-HCV has increased from 2.3% (95% uncertainty interval [UI]: 2.1%-2.5%) to 2.8% (95% UI: 2.6%-3.1%) and >122 million to >185 million between 1990 and 2005. Central and East Asia and North Africa/Middle East are estimated to have high prevalence (>3.5%); South and Southeast Asia, sub-Saharan Africa, Andean, Central, and Southern Latin America, Caribbean, Oceania, Australasia, and Central, Eastern, and Western Europe have moderate prevalence (1.5%-3.5%); whereas Asia Pacific, Tropical Latin America, and North America have low prevalence (<1.5%). The high prevalence of global HCV infection necessitates renewed efforts in primary prevention, including vaccine development, as well as new approaches to secondary and tertiary prevention to reduce the burden of chronic liver disease and to improve survival for those who already have evidence of liver disease. Copyright © 2012 American Association for the Study of Liver Diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of antioxidants in the chemistry of oxidative stress: A review.

              This Review Article is focused on the action of the reactive oxygenated species in inducing oxidative injury of the lipid membrane components, as well as on the ability of antioxidants (of different structures and sources, and following different mechanisms of action) in fighting against oxidative stress. Oxidative stress is defined as an excessive production of reactive oxygenated species that cannot be counteracted by the action of antioxidants, but also as a perturbation of cell redox balance. Reactive oxygenated/nitrogenated species are represented by superoxide anion radical, hydroxyl, alkoxyl and lipid peroxyl radicals, nitric oxide and peroxynitrite. Oxidative stress determines structure modifications and function modulation in nucleic acids, lipids and proteins. Oxidative degradation of lipids yields malondialdehyde and 4-hydroxynonenal, but also isoprostanes, from unsaturated fatty acids. Protein damage may occur with thiol oxidation, carbonylation, side-chain oxidation, fragmentation, unfolding and misfolding, resulting activity loss. 8-hydroxydeoxyguanosine is an index of DNA damage. The involvement of the reactive oxygenated/nitrogenated species in disease occurrence is described. The unbalance between the oxidant species and the antioxidant defense system may trigger specific factors responsible for oxidative damage in the cell: over-expression of oncogene genes, generation of mutagen compounds, promotion of atherogenic activity, senile plaque occurrence or inflammation. This leads to cancer, neurodegeneration, cardiovascular diseases, diabetes, kidney diseases. The concept of antioxidant is defined, along with a discussion of the existent classification criteria: enzymatic and non-enzymatic, preventative or repair-systems, endogenous and exogenous, primary and secondary, hydrosoluble and liposoluble, natural or synthetic. Primary antioxidants are mainly chain breakers, able to scavenge radical species by hydrogen donation. Secondary antioxidants are singlet oxygen quenchers, peroxide decomposers, metal chelators, oxidative enzyme inhibitors or UV radiation absorbers. The specific mechanism of action of the most important representatives of each antioxidant class (endogenous and exogenous) in preventing or inhibiting particular factors leading to oxidative injury in the cell, is then reviewed. Mutual influences, including synergistic effects are presented and discussed. Prooxidative influences likely to occur, as for instance in the presence of transition metal ions, are also reminded.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                18 December 2015
                December 2015
                : 16
                : 12
                : 30269-30308
                Affiliations
                [1 ]Pós Graduação em Ciências da Saúde (PPGCS), Campus A. C. Simões, Tabuleiro dos Martins, 57072-970 Maceió, AL, Brazil; kiviaqueiroz@ 123456hotmail.com (K.Q.A.); fabianamoura_al@ 123456hotmail.com (F.A.M.)
                [2 ]Faculdade de Nutrição/Universidade Federal de Alagoas (FANUT/UFAL), Campus A. C. Simões, Tabuleiro dos Martins, 57072-970 Maceió, AL, Brazil; jcfs_nut@ 123456yahoo.com.br
                [3 ]Instituto de Química e Biotecnologia (IQB), Universidade Federal de Alagoas (UFAL), Campus A. C. Simões, Tabuleiro dos Martins, 57072-970 Maceió, AL, Brazil; john-sk8@ 123456hotmail.com (J.M.S.); orlando_rpa@ 123456hotmail.com (O.R.P.A.)
                Author notes
                [* ]Correspondence: mariliaofg@ 123456gmail.com ; Tel.: +55-82-98818-0463
                Article
                ijms-16-26225
                10.3390/ijms161226225
                4691167
                26694382
                07004f27-7917-4f59-837b-27fc03f52733
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 10 October 2015
                : 04 December 2015
                Categories
                Review

                Molecular biology
                n-acetylcysteine,liver,hepatic injury,antioxidant,anti-inflammatory,biomarkers
                Molecular biology
                n-acetylcysteine, liver, hepatic injury, antioxidant, anti-inflammatory, biomarkers

                Comments

                Comment on this article