68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gαi3-Dependent Inhibition of JNK Activity on Intracellular Membranes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heterotrimeric G-protein signaling has been shown to modulate a wide variety of intracellular signaling pathways, including the mitogen-activated protein kinase (MAPK) family. The activity of one MAPK family class, c-Jun N-terminal kinases (JNKs), has been traditionally linked to the activation of G-protein coupled receptors (GPCRs) at the plasma membrane. Using a unique set of G-protein signaling tools developed in our laboratory, we show that subcellular domain-specific JNK activity is inhibited by the activation of Gαi3, the Gαi isoform found predominantly within intracellular membranes, such as the endoplasmic reticulum (ER)–Golgi interface, and their associated vesicle pools. Regulators of intracellular Gαi3, including activator of G-protein signaling 3 (AGS3) and the regulator of G-protein signaling protein 4 (RGS4), have a marked impact on the regulation of JNK activity. Together, these data support the existence of unique intracellular signaling complexes that control JNK activity deep within the cell. This work highlights some of the cellular pathways that are regulated by these intracellular complexes and identifies potential strategies for their regulation in mammalian cells.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Mitogen-activated protein kinases in innate immunity.

          Following pathogen infection or tissue damage, the stimulation of pattern recognition receptors on the cell surface and in the cytoplasm of innate immune cells activates members of each of the major mitogen-activated protein kinase (MAPK) subfamilies--the extracellular signal-regulated kinase (ERK), p38 and Jun N-terminal kinase (JNK) subfamilies. In conjunction with the activation of nuclear factor-κB and interferon-regulatory factor transcription factors, MAPK activation induces the expression of multiple genes that together regulate the inflammatory response. In this Review, we discuss our current knowledge about the regulation and the function of MAPKs in innate immunity, as well as the importance of negative feedback loops in limiting MAPK activity to prevent host tissue damage. We also examine how pathogens have evolved complex mechanisms to manipulate MAPK activation to increase their virulence. Finally, we consider the potential of the pharmacological targeting of MAPK pathways to treat autoimmune and inflammatory diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis.

            The c-Jun NH(2)-terminal kinase (JNK) is activated when cells are exposed to environmental stress, including UV radiation. Gene disruption studies demonstrate that JNK is essential for UV-stimulated apoptosis mediated by the mitochondrial pathway by a Bax/Bak-dependent mechanism. Here, we demonstrate that JNK phosphorylates two members of the BH3-only subgroup of Bcl2-related proteins (Bim and Bmf) that are normally sequestered by binding to dynein and myosin V motor complexes. Phosphorylation by JNK causes release from the motor complexes. These proapoptotic BH3-only proteins therefore provide a molecular link between the JNK signal transduction pathway and the Bax/Bak-dependent mitochondrial apoptotic machinery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK.

              Forkhead transcription factors of the FOXO class are negatively regulated by PKB/c-Akt in response to insulin/IGF signalling, and are involved in regulating cell cycle progression and cell death. Here we show that, in contrast to insulin signalling, low levels of oxidative stress generated by treatment with H2O2 induce the activation of FOXO4. Upon treatment of cells with H2O2, the small GTPase Ral is activated and this results in a JNK-dependent phosphorylation of FOXO4 on threonine 447 and threonine 451. This Ral-mediated, JNK-dependent phosphorylation is involved in the nuclear translocation and transcriptional activation of FOXO4 after H2O2 treatment. In addition, we show that this signalling pathway is also employed by tumor necrosis factor alpha to activate FOXO4 transcriptional activity. FOXO members have been implicated in cellular protection against oxidative stress via the transcriptional regulation of manganese superoxide dismutase and catalase gene expression. The results reported here, therefore, outline a homeostasis mechanism for sustaining cellular reactive oxygen species that is controlled by signalling pathways that can convey both negative (PI-3K/PKB) and positive (Ras/Ral) inputs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                01 September 2015
                2015
                : 3
                : 128
                Affiliations
                [1] 1Department of Physiology, Heart and Stroke, Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto , Toronto, ON, Canada
                Author notes

                Edited by: Richard Neubig, Michigan State University, USA

                Reviewed by: David L. Roman, The University of Iowa, USA; Joe B. Blumer, Medical University of South Carolina, USA

                *Correspondence: Scott P. Heximer, Department of Physiology, Heart and Stroke, Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada, scott.heximer@ 123456utoronto.ca

                Specialty section: This article was submitted to Computational Physiology and Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2015.00128
                4555961
                07015c96-46d4-487d-8df4-9676ec8c6556
                Copyright © 2015 Bastin, Yang and Heximer.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 June 2015
                : 13 August 2015
                Page count
                Figures: 6, Tables: 0, Equations: 0, References: 52, Pages: 9, Words: 6727
                Funding
                Funded by: Canadian Institutes of Health Research 10.13039/501100000024
                Award ID: MOP-106670
                Funded by: Heart and Stroke Foundation of Canada 10.13039/100004411
                Award ID: T6799
                Categories
                Bioengineering and Biotechnology
                Original Research

                galphai3,jnk mitogen-activated protein kinases,ags3,rgs proteins,intracellular membranes

                Comments

                Comment on this article