Blog
About

12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tailored Web-Based Interventions for Pain: Systematic Review and Meta-Analysis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Efforts have multiplied in the past decade to underline the importance of pain management. For both acute and chronic pain management, various barriers generate considerable treatment accessibility issues, thereby providing an opportunity for alternative intervention formats to be implemented. Several systematic reviews on Web-based interventions with a large emphasis on chronic pain and cognitive behavioral therapy have been recently conducted to explore the influence of these interventions on pain management However, to our knowledge, the specific contribution of tailored Web-based interventions for pain management has not been described and their effect on pain has not been evaluated.

          Objective

          The primary aim of this systematic review was to answer the following research question: What is the effect of tailored Web-based pain management interventions for adults on pain intensity compared with usual care, face-to-face interventions, and standardized Web-based interventions? A secondary aim was to examine the effects of these interventions on physical and psychological functions.

          Methods

          We conducted a systematic review of articles published from January 2000 to December 2015. We used the DerSimonian-Laird random effects models with 95% confidence intervals to calculate effect estimates for all analyses. We calculated standardized mean differences from extracted means and standard deviations, as outcome variables were measured on different continuous scales. We evaluated 5 different outcomes: pain intensity (primary outcome), pain-related disability, anxiety, depression, and pain catastrophizing. We assessed effects according to 3 time intervals: short term (<1 month), medium term (1-6 months), and long term (6-12 months).

          Results

          After full-text review, we excluded 31 articles, resulting in 17 eligible studies. Only 1 study concerned acute pain and was removed from the meta-analysis, resulting in 16 studies available for quantitative assessment. Compared with standard care or a waiting list, tailored Web-based intervention showed benefits immediately after, with small effect sizes (<0.40) for pain intensity (10 randomized controlled trials [RCTs], n=1310, P=.003) and pain-related disability (6 RCTs, n=953, P<.001). No other improvements were observed at follow-up in the medium and long terms. Compared with the active control group, no improvements were found for the primary outcome (pain intensity) or any of the outcomes except for a small effect size on pain catastrophizing (2 RCTs, n=333, P<.001) immediately after the intervention.

          Conclusions

          Tailored Web-based interventions did not prove to be more efficacious than standardized Web-based interventions in terms of pain intensity, pain-related disability, anxiety, and depression. An interesting finding was that some efficacy was shown on pain catastrophizing compared with active control interventions. Considering the diversity of approaches used in tailored Web-based interventions for chronic pain management, their efficacy is yet to be explored. Moreover, their contribution to acute pain management is embryonic.

          Trial Registration

          International prospective register of systematic reviews (PROSPERO): CRD42015027669; http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42015027669 (Archived by WebCite at http://www. webcitation.org/6uneWAuyR)

          Related collections

          Most cited references 46

          • Record: found
          • Abstract: found
          • Article: not found

          The Effectiveness of Web-Based vs. Non-Web-Based Interventions: A Meta-Analysis of Behavioral Change Outcomes

          Background A primary focus of self-care interventions for chronic illness is the encouragement of an individual's behavior change necessitating knowledge sharing, education, and understanding of the condition. The use of the Internet to deliver Web-based interventions to patients is increasing rapidly. In a 7-year period (1996 to 2003), there was a 12-fold increase in MEDLINE citations for “Web-based therapies.” The use and effectiveness of Web-based interventions to encourage an individual's change in behavior compared to non-Web-based interventions have not been substantially reviewed. Objective This meta-analysis was undertaken to provide further information on patient/client knowledge and behavioral change outcomes after Web-based interventions as compared to outcomes seen after implementation of non-Web-based interventions. Methods The MEDLINE, CINAHL, Cochrane Library, EMBASE, ERIC, and PSYCHInfo databases were searched for relevant citations between the years 1996 and 2003. Identified articles were retrieved, reviewed, and assessed according to established criteria for quality and inclusion/exclusion in the study. Twenty-two articles were deemed appropriate for the study and selected for analysis. Effect sizes were calculated to ascertain a standardized difference between the intervention (Web-based) and control (non-Web-based) groups by applying the appropriate meta-analytic technique. Homogeneity analysis, forest plot review, and sensitivity analyses were performed to ascertain the comparability of the studies. Results Aggregation of participant data revealed a total of 11,754 participants (5,841 women and 5,729 men). The average age of participants was 41.5 years. In those studies reporting attrition rates, the average drop out rate was 21% for both the intervention and control groups. For the five Web-based studies that reported usage statistics, time spent/session/person ranged from 4.5 to 45 minutes. Session logons/person/week ranged from 2.6 logons/person over 32 weeks to 1008 logons/person over 36 weeks. The intervention designs included one-time Web-participant health outcome studies compared to non-Web participant health outcomes, self-paced interventions, and longitudinal, repeated measure intervention studies. Longitudinal studies ranged from 3 weeks to 78 weeks in duration. The effect sizes for the studied outcomes ranged from -.01 to .75. Broad variability in the focus of the studied outcomes precluded the calculation of an overall effect size for the compared outcome variables in the Web-based compared to the non-Web-based interventions. Homogeneity statistic estimation also revealed widely differing study parameters (Qw16 = 49.993, P ≤ .001). There was no significant difference between study length and effect size. Sixteen of the 17 studied effect outcomes revealed improved knowledge and/or improved behavioral outcomes for participants using the Web-based interventions. Five studies provided group information to compare the validity of Web-based vs. non-Web-based instruments using one-time cross-sectional studies. These studies revealed effect sizes ranging from -.25 to +.29. Homogeneity statistic estimation again revealed widely differing study parameters (Qw4 = 18.238, P ≤ .001). Conclusions The effect size comparisons in the use of Web-based interventions compared to non-Web-based interventions showed an improvement in outcomes for individuals using Web-based interventions to achieve the specified knowledge and/or behavior change for the studied outcome variables. These outcomes included increased exercise time, increased knowledge of nutritional status, increased knowledge of asthma treatment, increased participation in healthcare, slower health decline, improved body shape perception, and 18-month weight loss maintenance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding tailoring in communicating about health.

            'Tailoring' refers to any of a number of methods for creating communications individualized for their receivers, with the expectation that this individualization will lead to larger intended effects of these communications. Results so far have been generally positive but not consistently so, and this paper seeks to explicate tailoring to help focus future research. Tailoring involves either or both of two classes of goals (enhancing cognitive preconditions for message processing and enhancing message impact through modifying behavioral determinants of goal outcomes) and employs strategies of personalization, feedback and content matching. These goals and strategies intersect in a 2 x 3 matrix in which some strategies and their component tactics match better to some goals than to others. The paper illustrates how this framework can be systematically applied in generating research questions and identifying appropriate study designs for tailoring research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Core outcome domains for chronic pain clinical trials: IMMPACT recommendations.

              To provide recommendations for the core outcome domains that should be considered by investigators conducting clinical trials of the efficacy and effectiveness of treatments for chronic pain. Development of a core set of outcome domains would facilitate comparison and pooling of data, encourage more complete reporting of outcomes, simplify the preparation and review of research proposals and manuscripts, and allow clinicians to make informed decisions regarding the risks and benefits of treatment. Under the auspices of the Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials (IMMPACT), 27 specialists from academia, governmental agencies, and the pharmaceutical industry participated in a consensus meeting and identified core outcome domains that should be considered in clinical trials of treatments for chronic pain. There was a consensus that chronic pain clinical trials should assess outcomes representing six core domains: (1) pain, (2) physical functioning, (3) emotional functioning, (4) participant ratings of improvement and satisfaction with treatment, (5) symptoms and adverse events, (6) participant disposition (e.g. adherence to the treatment regimen and reasons for premature withdrawal from the trial). Although consideration should be given to the assessment of each of these domains, there may be exceptions to the general recommendation to include all of these domains in chronic pain trials. When this occurs, the rationale for not including domains should be provided. It is not the intention of these recommendations that assessment of the core domains should be considered a requirement for approval of product applications by regulatory agencies or that a treatment must demonstrate statistically significant effects for all of the relevant core domains to establish evidence of its efficacy.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Med Internet Res
                J. Med. Internet Res
                JMIR
                Journal of Medical Internet Research
                JMIR Publications (Toronto, Canada )
                1439-4456
                1438-8871
                November 2017
                10 November 2017
                : 19
                : 11
                Affiliations
                1 College of Nursing Florida State University Tallahassee, FL United States
                2 Tallahassee Memorial Hospital Center for Research and Evidence-Based Practice Tallahassee, FL United States
                3 Quebec Nursing Intervention Research Network (RRISIQ) Montreal, QC Canada
                4 Ingram School of Nursing McGill University Montreal, QC Canada
                5 Department of Trauma Centre Integré Universitaire du Nord de l'Île de Montréal Hôpital du Sacré-Cœur de Montréal Montreal, QC Canada
                6 Department of Nursing Centre Integré Universitaire du Nord de l'Île de Montréal Hôpital du Sacré-Cœur de Montréal Montreal, QC Canada
                7 Daphne Cockwell School of Nursing Ryerson University Toronto, ON Canada
                8 Faculté des sciences infirmières Université de Montréal Montreal, QC Canada
                9 Centre de recherche Centre hospitalier universitaire Ste Justine Montreal, QC Canada
                10 Center for Nursing Research Jewish General Hospital McGill University Montreal, QC Canada
                11 Alan Edwards Centre for Research on Pain McGill University Montreal, QC Canada
                12 Lady Davis Institute Jewish General Hospital McGill University Montreal, QC Canada
                Author notes
                Corresponding Author: Geraldine Martorella gmartorella@ 123456fsu.edu
                Article
                v19i11e385
                10.2196/jmir.8826
                5701966
                29127076
                ©Geraldine Martorella, Madalina Boitor, Melanie Berube, Suzanne Fredericks, Sylvie Le May, Céline Gélinas. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 10.11.2017.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on http://www.jmir.org/, as well as this copyright and license information must be included.

                Categories
                Original Paper
                Original Paper

                Comments

                Comment on this article