11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of Side-to-Side Connections Affects the Relative Contributions of the Sodium and Calcium Current to Transverse Propagation Between Strands of Atrial Myocytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Atrial fibrillation (AF) leads to a loss of transverse connections between myocyte strands that is associated with an increased complexity and stability of AF. We have explored the interaction between longitudinal and transverse coupling, and the relative contribution of the sodium (I Na) and calcium (I Ca) current to propagation, both in healthy tissue and under diseased conditions using computer simulations.

          Methods: Two parallel strands of atrial myocytes were modeled (Courtemanche et al. ionic model). As a control condition, every single cell was connected both transversely and longitudinally. To simulate a loss of transverse connectivity, this number was reduced to 1 in 4, 8, 12, or 16 transversely. To study the interaction with longitudinal coupling, anisotropy ratios of 3, 9, 16, and 25:1 were used. All simulations were repeated for varying degrees of I Na and I Ca block and the transverse activation delay (TAD) between the paced and non-paced strands was calculated for all cases.

          Results: The TAD was highly sensitive to the transverse connectivity, increasing from 1 ms at 1 in 1, to 25 ms at 1 in 4, and 100 ms at 1 in 12 connectivity. The TAD also increased when longitudinal coupling was increased. Both decreasing transverse connectivity and increasing longitudinal coupling enhanced the synchronicity of activation of the non-paced strand and increased the propensity for transverse conduction block. Even after long TADs, the action potential upstroke in the non-paced strand was still mainly dependent on the I Na. Nevertheless, I Ca in the paced strand was essential to provide depolarizing current to the non-paced strand. Loss of transverse connections increased the sensitivity to both I Na and I Ca block. However, when longitudinal coupling was relatively high, transverse propagation was more sensitive to I Ca block than to I Na block.

          Conclusions: Although transverse propagation depends on both I Na and I Ca, their relative contribution, and sensitivity to channel blockade, depends on the distribution of transverse connections and the axial conductivity. This simple two-strand model helps to explain the nature of atrial discontinuous conduction during structural remodeling and provides an opportunity for more effective drug development.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Conduction remodeling in human end-stage nonischemic left ventricular cardiomyopathy.

          Several arrhythmogenic mechanisms have been inferred from animal heart failure models. However, the translation of these hypotheses is difficult because of the lack of functional human data. We aimed to investigate the electrophysiological substrate for arrhythmia in human end-stage nonischemic cardiomyopathy. We optically mapped the coronary-perfused left ventricular wedge preparations from human hearts with end-stage nonischemic cardiomyopathy (heart failure, n=10) and nonfailing hearts (NF, n=10). Molecular remodeling was studied with immunostaining, Western blotting, and histological analyses. Heart failure produced heterogeneous prolongation of action potential duration resulting in the decrease of transmural action potential duration dispersion (64 ± 12 ms versus 129 ± 15 ms in NF, P<0.005). In the failing hearts, transmural activation was significantly slowed from the endocardium (39 ± 3 cm/s versus 49 ± 2 cm/s in NF, P=0.008) to the epicardium (28 ± 3 cm/s versus 40 ± 2 cm/s in NF, P=0.008). Conduction slowing was likely due to connexin 43 (Cx43) downregulation, decreased colocalization of Cx43 with N-cadherin (40 ± 2% versus 52 ± 5% in NF, P=0.02), and an altered distribution of phosphorylated Cx43 isoforms by the upregulation of the dephosphorylated Cx43 in both the subendocardium and subepicardium layers. Failing hearts further demonstrated spatially discordant conduction velocity alternans which resulted in nonuniform propagation discontinuities and wave breaks conditioned by strands of increased interstitial fibrosis (fibrous tissue content in heart failure 16.4 ± 7.7 versus 9.9 ± 1.4% in NF, P=0.02). Conduction disorder resulting from the anisotropic downregulation of Cx43 expression, the reduction of Cx43 phosphorylation, and increased fibrosis is likely to be a critical component of arrhythmogenic substrate in patients with nonischemic cardiomyopathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Gap junction channels and cardiac impulse propagation.

            The role of gap junction channels on cardiac impulse propagation is complex. This review focuses on the differential expression of connexins in the heart and the biophysical properties of gap junction channels under normal and disease conditions. Structural determinants of impulse propagation have been gained from biochemical and immunocytochemical studies performed on tissue extracts and intact cardiac tissue. These have defined the distinctive connexin coexpression patterns and relative levels in different cardiac tissues. Functional determinants of impulse propagation have emerged from electrophysiological experiments carried out on cell pairs. The static properties (channel number and conductance) limit the current flow between adjacent cardiomyocytes and thus set the basic conduction velocity. The dynamic properties (voltage-sensitive gating and kinetics of channels) are responsible for a modulation of the conduction velocity during propagated action potentials. The effect is moderate and depends on the type of Cx and channel. For homomeric-homotypic channels, the influence is small to medium; for homomeric-heterotypic channels, it is medium to strong. Since no data are currently available on heteromeric channels, their influence on impulse propagation is speculative. The modulation by gap junction channels is most prominent in tissues at the boundaries between cardiac tissues such as sinoatrial node-atrial muscle, atrioventricular node-His bundle, His bundle-bundle branch and Purkinje fibers-ventricular muscle. The data predict facilitation of orthodromic propagation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of endo-epicardial dissociation of electrical activity and transmural conduction in the development of persistent atrial fibrillation.

              Atrial fibrillation (AF) is an arrhythmia that occurs as a result of numerous pathophysiological processes in the atria. High rate, neurohumoral activation, aging and chronic stretch activate a variety of signaling pathways leading to electrical and structural remodeling. In particular, endomysial fibrosis within the epicardial layer, which also occurs as a result of AF itself, can disrupt electrical connections between muscle bundles. This leads to electrical dissociation not only within the epicardial layer, but also between the epicardial layer and the endocardial bundle network. Although the normal, healthy atrium has a complex 3-dimensional shape, differences in activation time between the epicardial layer and the underlying trabecular network in the atrial free walls are small, and the atrial walls essentially function as a 2-dimensional surface for propagating fibrillation waves. However, progressive structural remodeling leads to increased dissociation of epicardial and endocardial activation patterns. Epi-endocardial dissociation allows fibrillation waves to propagate between epicardium and endocardium, and become visible as 'breakthrough waves' that add to the overall complexity of fibrillatory conduction and thus to AF stability. This process greatly increases the effective surface area available to fibrillation waves and causes the atrial walls to behave as a 3-dimensional substrate. Computer models support that this behavior can increase AF stability. Under these conditions, ectopic activity originating from e.g. the pulmonary veins is likely to trigger longer episodes of AF. Experiments using simultaneous endo-epicardial mapping of AF suggest that disseminated, irregular and non-repetitive ectopic focal discharges might also occur during AF. The increasingly 3-dimensional character of AF as a result of structural remodeling lowers the responsiveness to antiarrhythmic compounds and ablation therapy, thus advocating early rhythm control strategies.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                04 September 2018
                2018
                : 9
                : 1212
                Affiliations
                [1] 1Auckland Bioengineering Institute, University of Auckland , Auckland, New Zealand
                [2] 2Department of Physiology, Maastricht University , Maastricht, Netherlands
                Author notes

                Edited by: Joseph L. Greenstein, Johns Hopkins University, United States

                Reviewed by: Thomas Hund, The Ohio State University, United States; Eleonora Grandi, University of California, Davis, United States

                *Correspondence: Sander Verheule s.verheule@ 123456maastrichtuniversity.nl

                This article was submitted to Computational Physiology and Medicine, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2018.01212
                6131618
                071f44a6-70a6-435b-ad14-514e37e196ce
                Copyright © 2018 Zhao, Schotten, Smaill and Verheule.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 April 2018
                : 13 August 2018
                Page count
                Figures: 5, Tables: 0, Equations: 1, References: 29, Pages: 10, Words: 6408
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                atrial fibrillation,transverse propagation,discontinuous conduction,sodium,calcium,fibrosis,structural remodeling

                Comments

                Comment on this article