18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Floquet Engineering of Haldane Chern Insulators and Chiral bosonic phase transitions

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The realization of synthetic gauge fields has attracted a lot of attention recently in relation with periodically driven systems and the Floquet theory. In ultra-cold atom systems in optical lattices and photonic networks, this allows to simulate exotic phases of matter such as quantum Hall phases, anomalous quantum Hall phases and analogs of topological insulators. In this paper, we apply the Floquet theory to engineer anisotropic Haldane models on the honeycomb lattice and two-leg ladder systems. We show that these anisotropic Haldane models still possess a topologically non-trivial band structure associated with chiral edge modes (without the presence of a net unit flux in a unit cell), then referring to the quantum anomalous Hall effect. Focusing on (interacting) boson systems in s-wave bands of the lattice, we show how to engineer through the Floquet theory, a quantum phase transition between a uniform superfluid and a BEC (Bose-Einstein Condensate) analog of FFLO (Fulde-Ferrell-Larkin-Ovchinnikov) states, where bosons condense at non-zero wave-vectors. We perform a Ginzburg-Landau analysis of the quantum phase transition on the graphene lattice, and compute observables such as chiral currents and the momentum distribution. The results are supported by exact diagonalization calculations and compared with those of the isotropic situation. The validity of high-frequency expansion in the Floquet theory is also tested using time-dependent simulations for various parameters of the model. Last, we show that the anisotropic choice for the effective vector potential allows a bosonization approach in equivalent ladder (strip) geometries.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Photonic Floquet Topological Insulators

          The topological insulator is a fundamentally new phase of matter, with the striking property that the conduction of electrons occurs only on its surface, not within the bulk, and that conduction is topologically protected. Topological protection, the total lack of scattering of electron waves by disorder, is perhaps the most fascinating and technologically important aspect of this material: it provides robustness that is otherwise known only for superconductors. However, unlike superconductivity and the quantum Hall effect, which necessitate low temperatures or magnetic fields, the immunity to disorder of topological insulators occurs at room temperature and without any external magnetic field. For this reason, topological protection is predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics. Recently, a large theoretical effort has been directed towards bringing the concept into the domain of photonics: achieving topological protection of light at optical frequencies. Besides the interesting new physics involved, photonic topological insulators hold the promise for applications in optical isolation and robust photon transport. Here, we theoretically propose and experimentally demonstrate the first photonic topological insulator: a photonic lattice exhibiting topologically protected transport on the lattice edges, without the need for any external field. The system is composed of an array of helical waveguides, evanescently coupled to one another, and arranged in a graphene-like honeycomb lattice. The chirality of the waveguides results in scatter-free, one-way edge states that are topologically protected from scattering.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Experimental realisation of the topological Haldane model

            The Haldane model on the honeycomb lattice is a paradigmatic example of a Hamiltonian featuring topologically distinct phases of matter. It describes a mechanism through which a quantum Hall effect can appear as an intrinsic property of a band-structure, rather than being caused by an external magnetic field. Although an implementation in a material was considered unlikely, it has provided the conceptual basis for theoretical and experimental research exploring topological insulators and superconductors. Here we report on the experimental realisation of the Haldane model and the characterisation of its topological band-structure, using ultracold fermionic atoms in a periodically modulated optical honeycomb lattice. The model is based on breaking time-reversal symmetry as well as inversion symmetry. The former is achieved through the introduction of complex next-nearest-neighbour tunnelling terms, which we induce through circular modulation of the lattice position. For the latter, we create an energy offset between neighbouring sites. Breaking either of these symmetries opens a gap in the band-structure, which is probed using momentum-resolved interband transitions. We explore the resulting Berry-curvatures of the lowest band by applying a constant force to the atoms and find orthogonal drifts analogous to a Hall current. The competition between both broken symmetries gives rise to a transition between topologically distinct regimes. By identifying the vanishing gap at a single Dirac point, we map out this transition line experimentally and compare it to calculations using Floquet theory without free parameters. We verify that our approach, which allows for dynamically tuning topological properties, is suitable even for interacting fermionic systems. Furthermore, we propose a direct extension to realise spin-dependent topological Hamiltonians.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator

              The quantized version of the anomalous Hall effect has been predicted to occur in magnetic topological insulators, but the experimental realization has been challenging. Here, we report the observation of the quantum anomalous Hall (QAH) effect in thin films of Cr-doped (Bi,Sb)2Te3, a magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance reaches the predicted quantized value of h/e^2,accompanied by a considerable drop of the longitudinal resistance. Under a strong magnetic field, the longitudinal resistance vanishes whereas the Hall resistance remains at the quantized value. The realization of the QAH effect may lead to the development of low-power-consumption electronics.
                Bookmark

                Author and article information

                Journal
                2016-07-29
                2016-08-21
                Article
                10.1103/PhysRevB.95.045102
                1608.00025
                0726694f-7fa9-48ea-9788-981203fa0350

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Phys. Rev. B 95, 045102 (2017)
                24 pages, 16 figures, minor modifications and references added
                cond-mat.quant-gas cond-mat.str-el quant-ph

                Condensed matter,Quantum physics & Field theory,Quantum gases & Cold atoms
                Condensed matter, Quantum physics & Field theory, Quantum gases & Cold atoms

                Comments

                Comment on this article