Blog
About

42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetics and Gene Expression Involving Stress and Distress Pathways in Fibromyalgia with and without Comorbid Chronic Fatigue Syndrome

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In complex multisymptom disorders like fibromyalgia syndrome (FMS) and chronic fatigue syndrome (CFS) that are defined primarily by subjective symptoms, genetic and gene expression profiles can provide very useful objective information. This paper summarizes research on genes that may be linked to increased susceptibility in developing and maintaining these disorders, and research on resting and stressor-evoked changes in leukocyte gene expression, highlighting physiological pathways linked to stress and distress. These include the adrenergic nervous system, the hypothalamic-pituitary-adrenal axis and serotonergic pathways, and exercise responsive metabolite-detecting ion channels. The findings to date provide some support for both inherited susceptibility and/or physiological dysregulation in all three systems, particularly for catechol-O-methyl transferase (COMT) genes, the glucocorticoid and the related mineralocorticoid receptors (NR3C1, NR3C2), and the purinergic 2X4 (P2X4) ion channel involved as a sensory receptor for muscle pain and fatigue and also in upregulation of spinal microglia in chronic pain models. Methodological concerns for future research, including potential influences of comorbid clinical depression and antidepressants and other medications, on gene expression are also addressed.

          Related collections

          Most cited references 98

          • Record: found
          • Abstract: found
          • Article: not found

          P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury.

          Pain after nerve damage is an expression of pathological operation of the nervous system, one hallmark of which is tactile allodynia-pain hypersensitivity evoked by innocuous stimuli. Effective therapy for this pain is lacking, and the underlying mechanisms are poorly understood. Here we report that pharmacological blockade of spinal P2X4 receptors (P2X4Rs), a subtype of ionotropic ATP receptor, reversed tactile allodynia caused by peripheral nerve injury without affecting acute pain behaviours in naive animals. After nerve injury, P2X4R expression increased strikingly in the ipsilateral spinal cord, and P2X4Rs were induced in hyperactive microglia but not in neurons or astrocytes. Intraspinal administration of P2X4R antisense oligodeoxynucleotide decreased the induction of P2X4Rs and suppressed tactile allodynia after nerve injury. Conversely, intraspinal administration of microglia in which P2X4Rs had been induced and stimulated, produced tactile allodynia in naive rats. Taken together, our results demonstrate that activation of P2X4Rs in hyperactive microglia is necessary for tactile allodynia after nerve injury and is sufficient to produce tactile allodynia in normal animals. Thus, blocking P2X4Rs in microglia might be a new therapeutic strategy for pain induced by nerve injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic basis for individual variations in pain perception and the development of a chronic pain condition.

            Pain sensitivity varies substantially among humans. A significant part of the human population develops chronic pain conditions that are characterized by heightened pain sensitivity. We identified three genetic variants (haplotypes) of the gene encoding catecholamine-O-methyltransferase (COMT) that we designated as low pain sensitivity (LPS), average pain sensitivity (APS) and high pain sensitivity (HPS). We show that these haplotypes encompass 96% of the human population, and five combinations of these haplotypes are strongly associated (P=0.0004) with variation in the sensitivity to experimental pain. The presence of even a single LPS haplotype diminishes, by as much as 2.3 times, the risk of developing myogenous temporomandibular joint disorder (TMD), a common musculoskeletal pain condition. The LPS haplotype produces much higher levels of COMT enzymatic activity when compared with the APS or HPS haplotypes. Inhibition of COMT in the rat results in a profound increase in pain sensitivity. Thus, COMT activity substantially influences pain sensitivity, and the three major haplotypes determine COMT activity in humans that inversely correlates with pain sensitivity and the risk of developing TMD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor.

              Responses to pain and other stressors are regulated by interactions between multiple brain areas and neurochemical systems. We examined the influence of a common functional genetic polymorphism affecting the metabolism of catecholamines on the modulation of responses to sustained pain in humans. Individuals homozygous for the met158 allele of the catechol-O-methyltransferase (COMT) polymorphism (val158met) showed diminished regional mu-opioid system responses to pain compared with heterozygotes. These effects were accompanied by higher sensory and affective ratings of pain and a more negative internal affective state. Opposite effects were observed in val158 homozygotes. The COMT val158met polymorphism thus influences the human experience of pain and may underlie interindividual differences in the adaptation and responses to pain and other stressful stimuli.
                Bookmark

                Author and article information

                Journal
                Pain Res Treat
                PRT
                Pain Research and Treatment
                Hindawi Publishing Corporation
                2090-1542
                2090-1550
                2012
                29 September 2011
                : 2012
                Affiliations
                Departments of Anesthesiology, Neurobiology and Anatomy, and Exercise and Sport Science, The University of Utah, Salt Lake City, UT 84132, USA
                Author notes

                Academic Editor: Petra Schweinhardt

                Article
                10.1155/2012/427869
                3200121
                22110941
                Copyright © 2012 Kathleen C. Light et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Review Article

                Anesthesiology & Pain management

                Comments

                Comment on this article