7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The ion selectivity filter is not an activation gate in TRPV1-3 channels

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activation of TRPV1 channels in sensory neurons results in opening of a cation permeation pathway that triggers the sensation of pain. Opening of TRPV1 has been proposed to involve two gates that appear to prevent ion permeation in the absence of activators: the ion selectivity filter on the external side of the pore and the S6 helices that line the cytosolic half of the pore. Here we measured the access of thiol-reactive ions across the selectivity filters in rodent TRPV1-3 channels. Although our results are consistent with structural evidence that the selectivity filters in these channels are dynamic, they demonstrate that cations can permeate the ion selectivity filters even when channels are closed. Our results suggest that the selectivity filters in TRPV1-3 channels do not function as activation gates but might contribute to coupling structural rearrangements in the external pore to those in the cytosolic S6 gate.

          Related collections

          Most cited references100

          • Record: found
          • Abstract: found
          • Article: not found

          Structure of the TRPV1 ion channel determined by electron cryo-microscopy

          Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here, we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane helices S5–S6 and the intervening pore loop, which is flanked by S1–S4 voltage sensor-like domains. TRPV1 has a wide extracellular ‘mouth’ with short selectivity filter. The conserved ‘TRP domain’ interacts with the S4–S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including N-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TRPV1 structures in distinct conformations reveal mechanisms of activation

            TRP channels are polymodal signal detectors that respond to a wide range of physical and chemical stimuli. Elucidating how these channels integrate and convert physiological signals into channel opening is essential to understanding how they regulate cell excitability under normal and pathophysiological conditions. Here we exploit pharmacological probes (a peptide toxin and small vanilloid agonists) to determine structures of two activated states of the capsaicin receptor, TRPV1. A domain (S1-S4) that moves during activation of voltage-gated channels remains stationary in TRPV1, highlighting differences in gating mechanisms for these structurally related channel superfamilies. TRPV1 opening is associated with major structural rearrangements in the outer pore, including the pore helix and selectivity filter, as well as pronounced dilation of a hydrophobic constriction at the lower gate, suggesting a dual gating mechanism. Allosteric coupling between upper and lower gates may account for rich physiologic modulation exhibited by TRPV1 and other TRP channels.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A capsaicin-receptor homologue with a high threshold for noxious heat.

              Pain-producing heat is detected by several classes of nociceptive sensory neuron that differ in their thermal response thresholds. The cloned capsaicin receptor, also known as the vanilloid receptor subtype 1 (VR1), is a heat-gated ion channel that has been proposed to mediate responses of small-diameter sensory neurons to moderate (43 degrees C) thermal stimuli. VR1 is also activated by protons, indicating that it may participate in the detection of noxious thermal and chemical stimuli in vivo. Here we identify a structurally related receptor, VRL-1, that does not respond to capsaicin, acid or moderate heat. Instead, VRL-1 is activated by high temperatures, with a threshold of approximately 52 degrees C. Within sensory ganglia, VRL-1 is most prominently expressed by a subset of medium- to large-diameter neurons, making it a candidate receptor for transducing high-threshold heat responses in this class of cells. VRL-1 transcripts are not restricted to the sensory nervous system, indicating that this channel may be activated by stimuli other than heat. We propose that responses to noxious heat involve these related, but distinct, ion-channel subtypes that together detect a range of stimulus intensities.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing Editor
                Role: Senior Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                14 November 2019
                2019
                : 8
                : e51212
                Affiliations
                [1]deptMolecular Physiology and Biophysics Section Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health BethesdaUnited States
                Semmelweis University Hungary
                The University of Texas at Austin United States
                Semmelweis University Hungary
                Semmelweis University Hungary
                Duke University School of Medicine United States
                New Jersey Medical School, Rutgers University United States
                Author information
                https://orcid.org/0000-0001-5921-9320
                https://orcid.org/0000-0003-3419-0765
                Article
                51212
                10.7554/eLife.51212
                6887487
                31724952
                073738c8-6d34-4919-82c8-0076d416cf7d

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 20 August 2019
                : 13 November 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000065, National Institute of Neurological Disorders and Stroke;
                Award ID: K99 Pathway to Independence Award
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000065, National Institute of Neurological Disorders and Stroke;
                Award ID: Intramural Research Program NS002945
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/100000065, National Institute of Neurological Disorders and Stroke;
                Award ID: Competitive Postdoctoral Fellowship
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Structural Biology and Molecular Biophysics
                Custom metadata
                The TRPV1, TRPV2 and TRPV3 channels are gated on the cytosolic side of the pore, whereas structural changes in the ion selectivity filter associated with activation don't control cation access.

                Life sciences
                trp channel,trpv3,ion channel gating,trpv2,activation gate,human,mouse,rat
                Life sciences
                trp channel, trpv3, ion channel gating, trpv2, activation gate, human, mouse, rat

                Comments

                Comment on this article